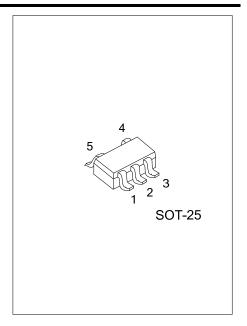
ULV3211 CMOS IC

RAIL TO RAIL I/O, **HIGH-SLEW-RATE OP AMP**

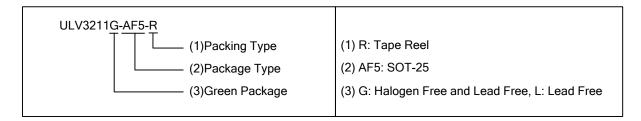

DESCRIPTION

The UTC ULV3211 is an input/output rail-to-rail operational amplifier. This device can be operated on either a single supply varying from +3V to +5.5V or dual supply ranging from ±1.5V to ±2.75V.

The UTC ULV3211 has a perfect AC performance with 6.5MHz bandwidth, 5.23V/µs slew rate.

The supply current for each amplifier of the UTC ULV3211 is only 500µA that makes it suitable for low current consumption applications to control high current loads. Applications include audio amplification for computers, sound ports, sound cards and set-top boxes.

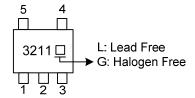
The UTC ULV3211 is generally applied in portable equipment, headphone driver, multimedia audio, battery-powered equipment, ASIC input or output amplifier, sensor amplifier, and low power/low voltage device.

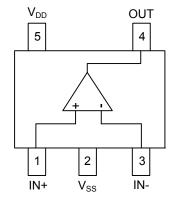


FEATURES

- * Single-Supply Operation: +3V ~ +5.5V
- * Input / Output Rail-to-Rail
- * Low Quiescent Current: 500µA @ 5V
- * With Low Input Current
- * 5.23V/µs High Slew Rate
- * High Output Driving Capacity
- * 6.5MHz High Gain-Bandwidth Product
- * 70dB High PSRR

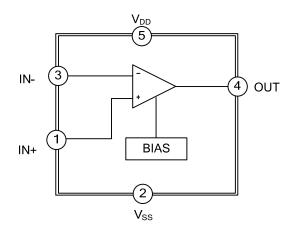
ORDERING INFORMATION


	Ordering	Ordering Number		Dooking	
	Lead Free	Halogen Free	Package	Packing	
ſ	ULV3211L-AF5-R	ULV3211G-AF5-R	SOT-25	Tape Reel	


1 of 4 www.unisonic.com.tw

ULV3211 cmos ic

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION	
1	IN+	Positive differential input	
2	V_{SS}	Ground	
3	IN-	Negative differential input	
4	OUT	Output	
5	V_{DD}	Positive analog supply of the cell	

■ BLOCK DIAGRAM

ULV3211 cmos ic

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL RATINGS		UNIT	
All Other Pins		V_{SS} -0.3 ~ V_{DD} +0.3	V	
Supply Voltage	V _{DD} ~ V _{SS}	6.5	V	
Power Dissipation (T _A =25°C)	P_{D}	520	mW	
Junction Temperature	TJ	+150	°C	
Operating Temperature	T _{OPR}	-40 ~ +85	°C	
Storage Temperature	T _{STG}	-65 ~ +160	°C	

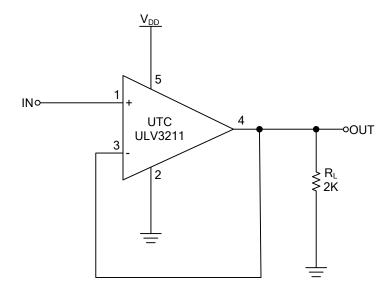
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	240	°C/W	

■ ELECTRICAL CHARACTERISTICS


 $(V_{DD}=5V, V_{SS}=0V, T_A=25^{\circ}C, C_L=10pF, R_L=1k\Omega \sim V_{DD}/2$, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Supplies								
Supply Voltage Range (Note)	V_{DD}		3.0		5.5	V		
Supply Current	I _{DD}	No load		0.5	0.7	mA		
Total Power Dissipation	P _{TOT}	No load		0.25	0.35	mW		
DC Characteristics								
Input Offset Voltage	$V_{I(OS)}$			±1.5	±10	mV		
Common Mode Voltage	V_{CM}	Inferred from CMRR test	0		5	V		
Input Bias Current	Ι _Β			±1.5	±20	nA		
Input Bias Current Offset	los			±1.5	±20	nΑ		
Input Resistance	R _{IN}			1000		ΜΩ		
Open Loop Gain	A_V		68	78		dB		
Maximum Output Current	l ₀	V _{OUT} =±V _{IN} x 90%	55	±66		mA		
Output Voltage Swing High	V_{OH}	$R_L=2k\Omega$	4.96	4.99		V		
Output Voltage Swing Low	V_{OL}	$R_L=2k\Omega$		0.012	0.04	V		
Power Supply Rejection Ratio	PSRR	3V≤V _{DD} ≤5.5V	45	70		dB		
Common-Mode Rejection Ratio	CMRR	$V_{SS} \le V_{CM} \le V_{DD}$	45	65		dB		
AC Characteristics								
Gain-Bandwidth Product	GBWP	Open-loop, No load		6.5		MH_Z		
Slew-Rate	SR	Measured from 10%~90% of 4V _{P-P} step, R _L =1k Ω , C _L =10pF		5.23		V/µs		
Phase Margin	PM			60		deg		
Maximum Output Power	Io	THD<0.1%, R _L =16Ω		100		mA		

Note: Guaranteed by the Power-Supply Rejection Ratio (PSRR) test.

ULV3211 cmos ic

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.