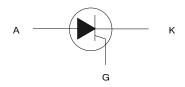
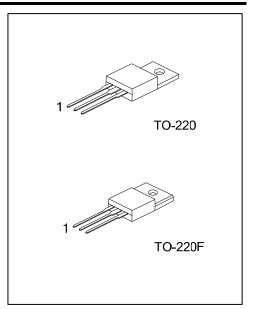


UNISONIC TECHNOLOGIES CO., LTD

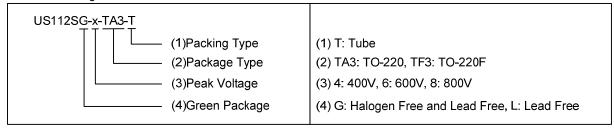

US112S/N scr

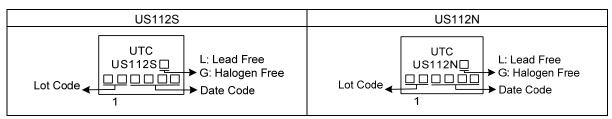

SCRS

DESCRIPTION

The UTC **US112S/N** is suitable to fit all modes of control found in applications such as overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, in-rush current limiting circuits, capacitive discharge ignition, voltage regulation circuits.

■ SYMBOL




■ ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Dooking
Lead Free	Halogen Free	Package	1	2	3	Packing
US112SL-x-TA3-T	US112SL-x-TA3-T US112SG-x-TA3-T		K	Α	G	Tube
US112SL-x-TF3-T US112SG-x-TF3-T		TO-220F	K	Α	G	Tube
US112NL-x-TA3-T	US112NG-x-TA3-T	TO-220	K	Α	G	Tube
US112NL-x-TF3-T	US112NG-x-TF3-T	TO-220F	K	Α	G	Tube

Note: Pin Assignment: K: Cathode A: Anode G: Gate

■ MARKING INFORMATION

www.unisonic.com.tw 1 of 4

■ ABSOLUTE MAXIMUM RATING

PARAMETER			RATING	UNIT	
	US112S/N-4	\/	400		
Repetitive Peak Off-State Voltages	US112S/N-6	V _{DRM} V _{RRM}	600	V	
	US112S/N-8		800		
RMS On-State Current (180°Conduction Angle) (T _C = 110°C)			12	Α	
Average On-State Current (180°Conduction Angle	I _{T(AV)}	8	Α		
Non Repetitive Surge Peak On-State Current	t _P =8.3ms	I _{TSM}	146	^	
(T _J = 25°C)	t _P =10ms		140	Α	
l²t Value For Fusing (t_P = 10 ms , T_J = 25°C)	I²t	98	A ² S		
Critical Rate Of Rise Of On-State Current		dl/dt	50	Λ/1.0	
$(I_G = 2 \times I_{GT}, t_R \le 100 \text{ ns}, T_J = 125^{\circ}\text{C})$	50		A/µs		
Peak Gate Current (t _P =20µs, F = 60 Hz, T _J =125°	I_{GM}	4	Α		
Peak Reverse Gate Voltage	US112N	V_{RGM}	5	V	
Average Gate Power Dissipation (T _J = 125°C)	$P_{G(AV)}$	1	W		
Storage Temperature	T _{STG}	-40 ~ +150	°C		
Junction Temperature	TJ	+125	°C		

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

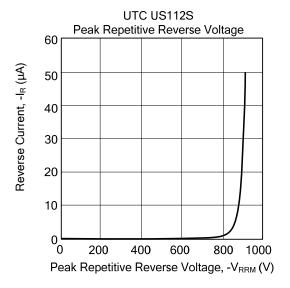
PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Case		θ_{JA}	60	K/W
lunation to Ambient	TO-220	0	1.3	12/11/1
Junction to Ambient	TO-220F	θ _{JC}	2.3	K/W

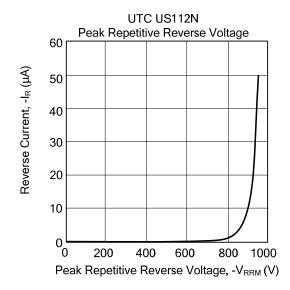
■ ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise specified)

US112S(SENSITIVE)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Gate Trigger Current	I_{GT}	$V_D = 12V, R_L = 140\Omega$			200	μΑ
Gate Trigger Voltage	V_{GT}	$V_D = 12V, R_L = 140\Omega$			8.0	V
Gate Non-Trigger Voltage	V_{GD}	$V_D = V_{DRM}$, $R_L = 3.3$ kΩ, $R_{GK} = 1$ KΩ, $T_J = 125$ °C	0.1			٧
Reverse Gate Voltage	V_{RG}	I _{RG} = 10 μA	8			V
Holding Current	I _H	$I_T = 50 \text{mA}, R_{GK} = 1 \text{k}\Omega$			5	mA
Latching Current	Iι	$I_G = 1 \text{mA}$, $R_{GK} = 1 \text{k}\Omega$			6	mA
Circuit Rate of Change of Off-State Voltage	dV/dt	$V_D = 67\% V_{DRM}, R_{GK} = 220\Omega$	5			V/µs
On-State Voltage	V_{TM}	I_{TM} =24A, t_P = 380 μ s			1.6	V
Threshold Voltage	V_{T0}	T _J = 125℃			0.85	V
Dynamic Resistance	R_D	T _J = 125°C			30	mΩ
Off-State Leakage Current	I _{DRM}	$V_{DRM} = V_{RRM}, R_{GK} = 220\Omega$			5	μΑ
	I_{RRM}	$V_{DRM} = V_{RRM}$ $R_{GK} = 220\Omega$, $T_J = 125^{\circ}$ C			2	mA

US112S/N scr


■ ELECTRICAL CHARACTERISTICS(Cont.)


US112N(SENSITIVE)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
Gate Trigger Current	I_{GT}	$V_D = 12 \text{ V}, R_L = 33\Omega$	2		15	mA
Gate Trigger Voltage	V_{GT}	$V_D = 12 \text{ V}, R_L = 33\Omega$			1.3	V
Gate Non-Trigger Voltage	$V_{\sf GD}$	$V_D = V_{DRM}, R_L = 3.3k\Omega, T_J = 125^{\circ}C$	0.2			V
Holding Current	I _H	I _T = 500mA Gate open			30	mA
Latching Current	L	$I_G = 1.2 I_{GT}$			60	mA
Circuit Rate of Change of Off-State Voltage	dV/dt	V _D =67% V _{DRM} Gate open, T _J =125°C	200			V/µs
On-State Voltage	V_{TM}	I_{TM} =24 A, t_P = 380 μ s			1.6	V
Threshold Voltage	V_{T0}	T _J = 125°C			0.85	V
Dynamic Resistance	R_D	T _J = 125°C			30	mΩ
Off-State Leakage Current	I _{DRM}	$V_{DRM} = V_{RRM}$			5	μΑ
	I_{RRM}	$V_{DRM} = V_{RRM}, T_J = 125^{\circ}C$			2	mΑ

US112S/N scr

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.