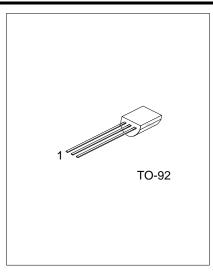


UTC UNISONIC TECHNOLOGIES CO., LTD

CR03AM-12 **SCR**

THYRISTOR

DESCRIPTION

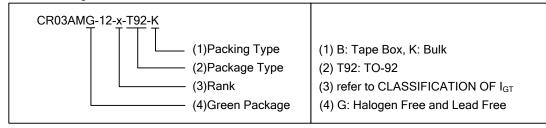

The UTC CR03AM-12 is suitable for low power applications.

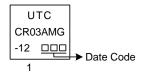
FEATURES

* $I_{T (AV)} : 0.3 A$ * V_{DRM}: 600 V * I_{GT} : 100 μA

* Non-Insulated Type

* Glass Passivation Type


SYMBOL


ORDERING INFORMATION

Ordering Number	Package	Pin Assignment			De abia a	
		1	2	3	Packing	
CR03AMG-12-x-T92-B	TO-92	G	Α	K	Tape Box	
CR03AMG-12-x-T92-K	TO-92	G	Α	K	Bulk	

Note: Pin assignment: G: Gate A: Anode K: Cathode

MARKING

www.unisonic.com.tw 1 of 3 CR03AM-12 scr

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Depatitive Deals Valtage	Reverse	V_{RRM}	600	V
Repetitive Peak Voltage	Off-State (Note2)	V_{DRM}	600	V
Non Depatitive Deals Valtage	Reverse	V_{RSM}	800	V
Non-Repetitive Peak Voltage	Off-State (Note2)	V_{DSM}	800	V
DC Voltage	Reverse	$V_{R(DC)}$	480	V
DC Voltage	Off-State (Note2)	$V_{D(DC)}$	480	V
Dook Cata Valtaga	Forward	V_{FGM}	6	V
Peak Gate Voltage	Reverse	V_{RGM}	6	V
Peak Gate Forward Current		I_{FGM}	0.3	Α
RMS On-State Current		I _{T (RMS)}	0.47	Α
Surge On-State Current (60Hz sine half wave 1 full cycle, peak value, non-repetitive)		I _{TSM}	20	Α
Average On-State Current (Commercial frequency, sine half wave 180° conduction, $T_A = 47^{\circ}$ C)		I _{T(AV)}	0.3	А
I ² t for Fusing (Value corresponding to 1 cycle of half wave 60Hz, surge on-state current)		l ² t	1.6	A ² s
Peak Gate Power Dissipation		P_GM	0.5	W
Average Gate Power Dissipation		$P_{G(AV)}$	0.1	W
Mass (Typical value)			0.23	g
Junction Temperature		T_J	-40 ~ +110	°C
Storage Temperature		T_{STG}	-40 ~ +125	°C
			_	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied

■ THERMAL DATA

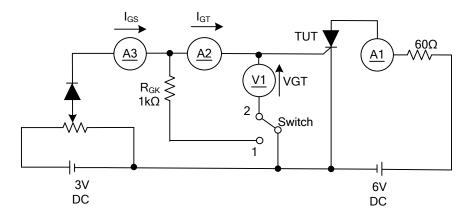
PARAMETER	SYMBOL	MAX	UNIT
Junction to Ambient	θ_{JA}	180	°C/W

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Repetitive Peak Reverse Current	I _{RRM}	T _J = 110°C, V _{RRM} applied			0.1	mA
Repetitive Peak Off-State Current	I _{DRM}	T_{J} = 110°C, V_{DRM} applied, R_{GK} =1k Ω			0.1	mA
On-State Voltage (T _A = 25°C)	V_{TM}	I _{TM} = 4 A, instantaneous value			1.8	V
Gate Trigger Voltage	V_{GT}	T_{J} = 25°C, V_{D} =6 V, I_{T} = 0.1A			0.8	V
Gate Non-Trigger Voltage	$V_{\sf GD}$	T_J = 110°C, V_D =1/2 V_{DRM} , R_{GK} =1k Ω	0.2			V
Gate Trigger Current	I_{GT}	$T_J = 25$ °C, $V_D = 6$ V, $I_T = 0.1$ A	1		100	μΑ
Holding Current	I _H	$T_J=25$ °C, $V_D=12$ V, $R_{GK}=1$ k Ω		1.5	3	mA

CLASSIFICATION OF I_{GT}

If special values of I_{GT} are required, choose item D or E from those listed in the table below if possible.


RANK	D	E
RANGE	1 ~ 50	20 ~100

Note: The above values do not include the current flowing through the $1k\Omega$ resistance between the gate and cathode.

^{2.} With gate to cathode resistance $R_{\text{GK}}\!\!=$ $1k\Omega$

CR03AM-12 SCR

■ I_{GT}, V_{GT} MEASUREMENT CIRCUIT

Switch 1: I_{GT} Measurement Switch 2: V_{GT} Measurement

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.