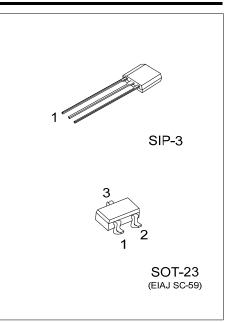
UNISONIC TECHNOLOGIES CO., LTD

UHE4913 cmos ic

LOW POWER HALL EFFECT SWITCH

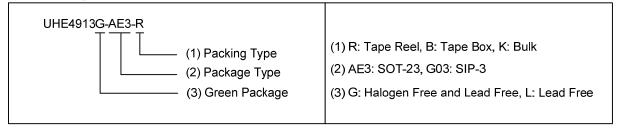
DESCRIPTION

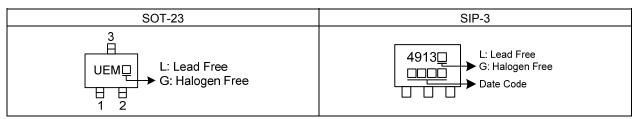

UHE4913 is a low-power integrated Hall switch designed to sense the applied magnetic flux density and give a digital output, which indicates the present condition of the magnitude sensed.

It is mainly designed for battery-powered system and hand-held equipment, such as cellular flip-phones and PDA's, in which power consumption is one major concern. The typical power consumption of UHE4913 is down to $10\mu W$ in 2.7V supply.

The output will be at the "High" level when no magnetic field is applied. When the applied magnetic flux density is stronger than the switching threshold, the output would be at the "Low" level.

■ FEATURES

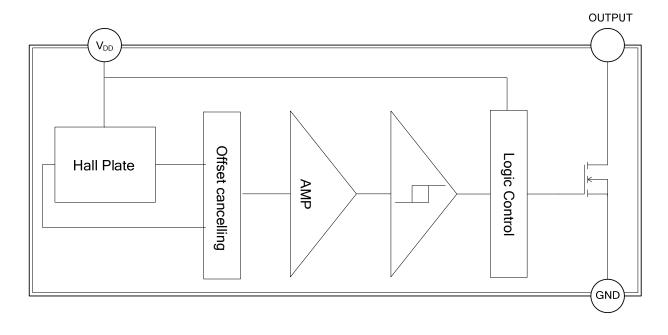

- * Micropower Operation
- * 2.4V to 5.5V Battery Operation
- * Switching for both poles of magnet
- * Offset Canceling Technology
- * Superior Temperature Stability
- * Extremely Low Switch-Point Drift
- * Insensitive to Physical Stress


■ ORDERING INFORMATION

Ordering	Dookogo	Pin	Assignm	Dooking			
Lead Free	Halogen Free	Package	1	2	3	Packing	
UHE4913G-AE3-R	UHE4913G-AE3-R	SOT-23	I	0	G	Tape Reel	
UHE4913L-G03-B	UHE4913G-G03-B	SIP-3	I	G	0	Tape Box	
UHE4913L-G03-K	UHE4913G-G03-K	SIP-3	Ī	G	0	Bulk	

Note: Pin Assignment: I: V_{DD} O: Output G: GND

MARKING


www.unisonic.com.tw 1 of 5

■ PIN DESCRIPTION

PIN NAME	PIN TYPE	PIN DESCRIPTION
V_{DD}	I	Power Supply
OUTPUT	0	Digital Output
GND	G	Ground

Note: O=Output, I=Power Supply, G=Ground

■ BLOCK DIAGRAM

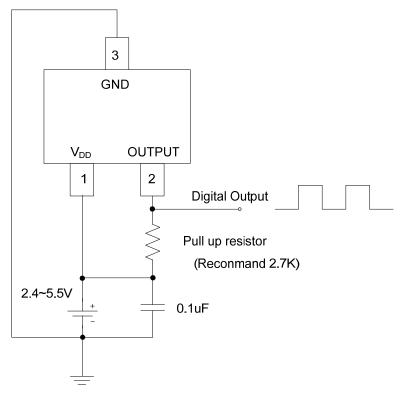
ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{DD}	5.5	V
Supply current	ΙQ	-1 ~ +2.5	mA
Magnetic Flux Density	В	Unlimited	mT
Junction Temperature	T _J	+150	°C
Operation Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-40 ~ +150	°C

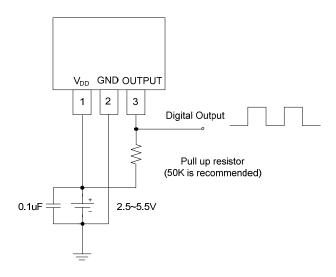
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V_{DD}	Operating	2.4	2.7	5.5	V
Output Voltage	V_{OUT}		-0.3	2.7	5.5	V
Ambient Temperature	T _A		-40	25	85	°C

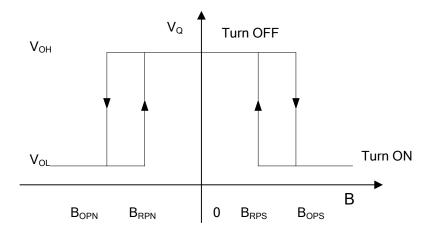

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Output Saturation Voltage	V_{SAT}	\/ -2.7\/		0.1		V
Output Leakage Current	I _{OFF}	V _{DD} =2.7V		0.01		μΑ
	I _{DD(EN)}			1.1		mA
Supply Current	I _{DD(DIS)}	V _{DD} =2.7V		2.5		μΑ
	I _{DD(AVG)}			3	20	μΑ
Operating Time	T _{OP}			50		μs
Standby Time	T_{SD}	V _{DD} =2.7V		130		ms
Duty Cycle	D.C.			0.04		%
Output Rise Time	t _R	$R_L=2.7K\Omega, C_L=10_PF$		0.5	1	μs
Output Fall Time	t_{F}	$R_L=2.7K\Omega, C_L=10_PF$		0.1	1	μs


■ MAGNETIC CHARACTERISTICS (V_{DD}=2.7V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Operation Points	B _{OP}	20	35	50	
Release Points	B _{RP}	12	27	42	Gauss
Hysteresis	B _{OP} -B _{RP}	2	8	16	

■ TYPICAL APPLICATION CIRCUIT



SOT-23

SIP-3

■ MAGNETIC FLUX

SOT-23 / SIP-3

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.