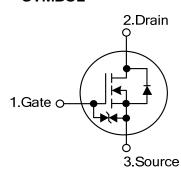


UNISONIC TECHNOLOGIES CO., LTD

10N70Z **Power MOSFET**

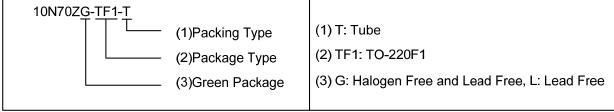
10A, 700V N-CHANNEL **POWER MOSFET**

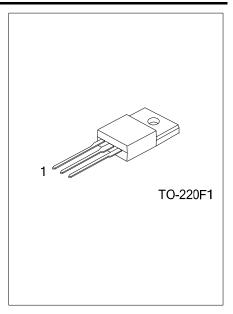

DESCRIPTION

The UTC 10N70Z is a high voltage and high current power MOSFET, designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

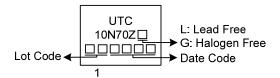
- * $R_{DS(ON)} \le 1.2 \Omega @ V_{GS} = 10V, I_D = 5.0A$
- * Low gate charge (typical 44 nC)
- * Low Crss (typical 18 pF)
- * Fast switching
- * 100% avalanche tested
- * Improved dv/dt capability


SYMBOL



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
10N70ZL-TF1-T	10N70ZG-TF1-T	TO-220F1	G	D	S	Tube	
Note: Pin Assignment: G: Gate D: Drain S: Source							


10N70ZG-TF1-T (1) T: Tube (1)Packing Type

www.unisonic.com.tw 1 of 7

■ MARKING

10N70Z

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	700	V
Gate-Source Voltage		V_{GSS}	±20	V
Avalanche Current (Note 2)		I _{AR}	10	Α
Drain Current	Continuous	I _D	10	Α
	Pulsed (Note 2)	I _{DM}	40	Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	250	mJ
	Repetitive (Note 2)	E _{AR}	15.6	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns
Power Dissipation		P _D	50	W
Junction Temperature		TJ	+150	°C
Operating Temperature		T _{OPR}	-55 ~ +150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

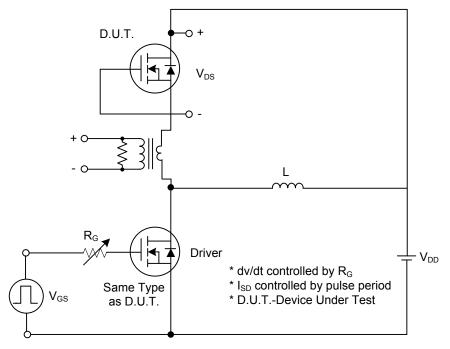
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 14.2mH, I_{AS} = 10A, V_{DD} = 50V, R_G = 25 Ω Starting T_J = 25°C
- 4. $I_{SD} \le 9.5A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

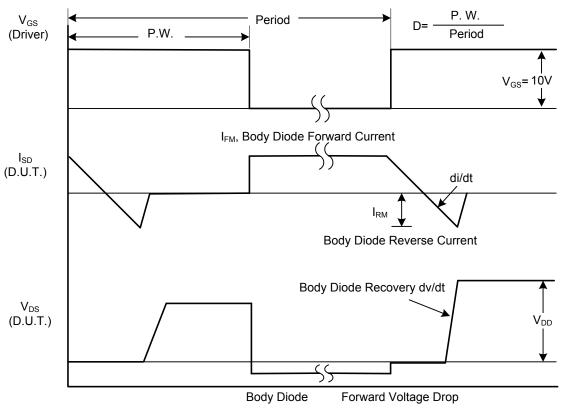
■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θјς	2.5	°C/W	

10N70Z Power MOSFET

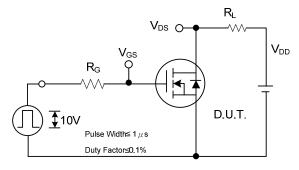

■ ELECTRICAL CHARACTERISTICS(T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						•	
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	700			V
Drain-Source Leakage Current		I _{DSS}	$V_{DS} = 700V, V_{GS} = 0V$			10	μA
Gate-Source Leakage Current	Forward		V _{GS} = 20 V, V _{DS} = 0 V			5	μA
	Reverse	I_{GSS}	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-5	μΑ
Breakdown Voltage Temperature Coefficient		$\Delta BV_{DSS}/\Delta T_J$	I_D = 250 μ A, Referenced to 25°C		0.7		V/°C
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	$V_{GS} = 10V, I_D = 5.0A$		0.9	1.2	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{ISS}			1570	2040	pF
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1.0 MHz		166	215	pF
Reverse Transfer Capacitance		C_{RSS}			18	24	pF
SWITCHING CHARACTERISTIC	S						
Turn-On Delay Time		t _{D(ON)}]		23	55	ns
Turn-On Rise Time Turn-Off Delay Time		t _R	V_{DS} =350V, I_{D} =10A, R_{G} =25 Ω		69	150	ns
		t _{D(OFF)}	(Note 1, 2)		144	300	ns
		t _F			90	165	ns
Total Gate Charge		Q_{G}	V _{DS} =560V, I _D =10A, V _{GS} =10 V		44	57	nC
Gate-Source Charge		Q_{GS}	(Note 1, 2)		6.7		nC
Gate-Drain Charge		Q_GD	(Note 1, 2)		18.5		nC
DRAIN-SOURCE DIODE CHARA	ACTERISTIC	S AND MAX	IMUM RATINGS				
Drain-Source Diode Forward Voltage		V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 10 \text{A}$			1.4	V
Maximum Continuous Drain-Source Diode		Is				10	Α
Forward Current						10	Α
Maximum Pulsed Drain-Source Diode		I _{SM}				40	Α
Forward Current		_				70	^
Reverse Recovery Time		t _{rr}	$V_{GS} = 0 \text{ V}, I_{S} = 10\text{A},$		420		ns
Reverse Recovery Charge		Q_{RR}	$dI_F / dt = 100 A/\mu s \text{ (Note 1)}$		4.2		μC

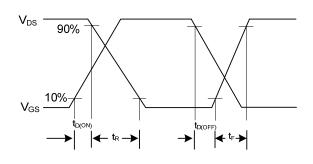

Notes: 1. Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2%

^{2.} Essentially independent of operating temperature

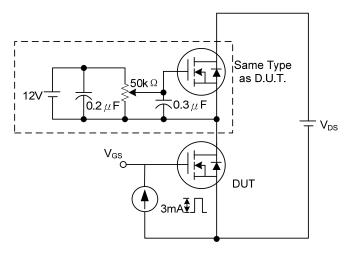
■ TEST CIRCUITS AND WAVEFORMS

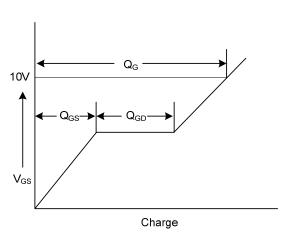


Peak Diode Recovery dv/dt Test Circuit

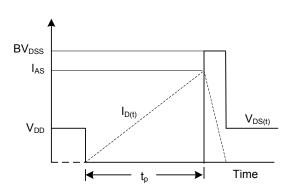


Peak Diode Recovery dv/dt Waveforms

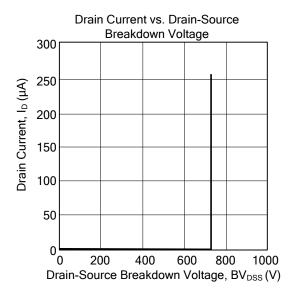

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

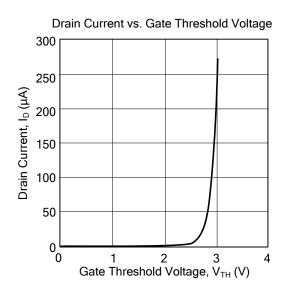

Switching Test Circuit

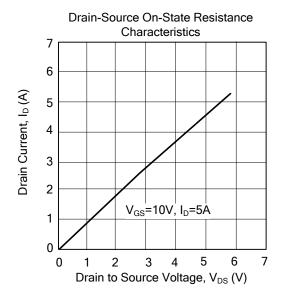

Switching Waveforms

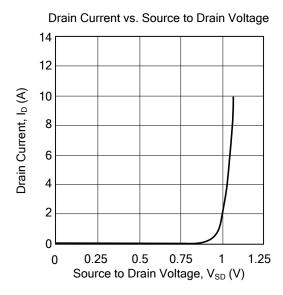

Gate Charge Test Circuit

Gate Charge Waveform




Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.