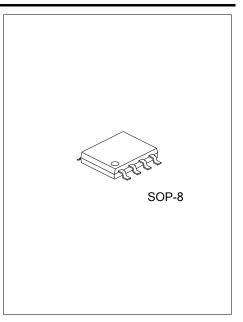


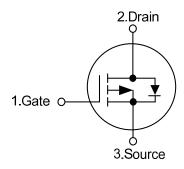
UNISONIC TECHNOLOGIES CO., LTD

UTT7P06 Preliminary Power MOSFET

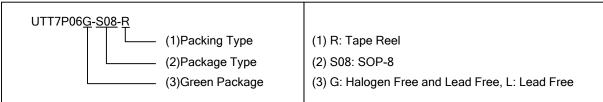
-6.2A, -60V P-CHANNEL POWER MOSFET

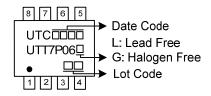

■ DESCRIPTION

The UTC **UTT7P06** is a P-channel MOSFET, it uses UTC's advanced technology to provide the customers with a minimum on state resistance and high switching speed.


The UTC **UTT7P06** is suitable for load switch and battery protection applications.

- * $R_{DS(ON)}$ < 40 m Ω @ V_{GS} = -10V, I_D = -6.2A $R_{DS(ON)}$ < 50 m Ω @ V_{GS} = -4.5V, I_D = -5.0A
- * High switching speed


■ SYMBOL


ORDERING INFORMATION

-	Ordering Number		Dookogo	Pin Assignment							Dealine	
	Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
	UTT7P06L-S08-R	UTT7P06G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C unless otherwise noted)

PAR	AMETER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		$V_{ extsf{DSS}}$	-60	V	
Gate-Source Voltage		V_{GSS}	±20	V	
	Continuous T _A =25°C	- I _D	-6.2	Α	
Drain Current	(Note 1) T _A =70°C		-5	Α	
	Pulsed (Note 2)	I _{DM}	-40	Α	
Power Dissipation (Not	te 1)	P_D	2	W	
Junction Temperature		T_J	T _J -55 ~ +150		
Storage Temperature F	Range	T _{STG}	-55 ~ +150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	75	°C/W
Junction to Case	θлс	30	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC PARAMETERS							
Drain-Source Breakdown Voltag	е	BV_{DSS}	I _D =-250μA, V _{GS} =0V	-60			V
Zara Cata Valtaga Drain Curran	4	I _{DSS}	V _{DS} =-48V, V _{GS} =0V			-1	μΑ
Zero Gate Voltage Drain Curren	ι		V _{DS} =-48V, V _{GS} =0V, T _J =55°C			-5	μΑ
Cata Sauraa Laakaga Current	Forward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=-250\mu A$	-2	-3	V	
On State Drain Current		$I_{D(ON)}$	V _{GS} =-10V, V _{DS} =-5V	-40			Α
Static Drain-Source On-State Resistance			V _{GS} =-10V, I _D =-6.2A		43	48	mΩ
		R _{DS(ON)}	V_{GS} =-4.5V, I_{D} =-5A		58	63	mΩ
Forward Transconductance		g fs	V_{DS} =-5V, I_{D} =-6.2A		16		S
DYNAMIC PARAMETERS							
Input Capacitance		C_{ISS}			950	1250	pF
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =-30V, f=1.0MHz		110		pF
Reverse Transfer Capacitance		C_{RSS}			90		pF
Gate Resistance		R_{G}	V _{GS} =0V, V _{DS} =0V, f=1MHz		6		Ω
SWITCHING PARAMETERS							
Turn-ON Delay Time		$t_{D(ON)}$			49		ns
Rise Time		t_R	V _{GS} =-10V, V _{DS} =-30V		40		ns
Turn-OFF Delay Time		$t_{D(OFF)}$	$R_G=3\Omega$, $I_D=-6.2A$		262		ns
Fall-Time		t_{F}			250		ns
SOURCE- DRAIN DIODE RATI	NGS AND	CHARACTER	RISTICS				
Maximum Body-Diode Continuous Current		,				-4.2	Α
		I _S				-4.2	Α.
Diode Forward Voltage		V_{SD}	I _S =-1A,V _{GS} =0V		-0.74	-1	V
Body Diode Reverse Recovery	Гіте	t _{rr}	I _F =-6.2A, dl/dt=100A/μS		34	42	ns
Body Diode Reverse Recovery (Charge	Q_{rr}			47		nC

Notes: 1. The value of θ_{JA} is measured with the device mounted on $1in^2FR-4$ board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}C$. The value in any a given application depends on the user's specific board design. The current rating is based on the $t \le 10s$ thermal resistance rating.

- 2. Repetitive rating, pulse width limited by junction temperature.
- 3. The θ_{JA} is the sum of the thermal impedence from junction to lead θ_{JL} and lead to ambient.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

