2-BIT BUS SWITCH WITH INDIVIDUAL ENABLES

- DESCRIPTION

The UTC US5C3305 consist of two independent 5Ω switches with fast individual enables. The " A " pin is connected to the " B " pin directly when the associated Bus Enable (BE) pin is set to "High". The bus switch introduces no additional propagation delay or additional ground bounce noise.

- FEATURES
* Low on-resistor between two ports (5Ω typical)
* Near-Zero propagation delay
* Direct bus connection when switches are ON
* Ultra Low Quiescent Power (0.2 $\mu \mathrm{A}$ typical)
- Ideally suited for notebook applications

- ORDERING INFORMATION

Ordering Number		Package	Packing
Lead Free	Halogen Free		
US5C3305L-P08-R	US5C3305G-P08-R	TSSOP-8	Tape Reel
US5C3305L-SM1-R	US5C3305G-SM1-R	MSOP-8	Tape Reel

US5C3305G-P08-R		
	(1)Packing Type	(1) R: Tape Reel
	(2)Package Type	(2) P08: TSSOP-8, SM1: MSOP-8
	(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

MSOP-8	TSSOP-8

- PIN CONFIGURATION

- PIN DESCRIPTION

PIN NO.	PIN NAME	
1,7	$\mathrm{BE}_{1}, \mathrm{BE}_{2}$	Switch Enable
2,5	$\mathrm{~A} 1, \mathrm{~A} 2$	Bus A
3,6	$\mathrm{~B} 1, \mathrm{~B} 2$	Bus B
4	GND	Ground
8	V $_{\mathrm{CC}}$	Power

- TRUTH TABLE (Note 1)

BEn	An	Bn	V_{cc}	Function
$\mathrm{X}($ Note 2)	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	GND	Disconnect
L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	V_{cc}	Disconnect
H	Bn	An	V_{cc}	Connect

Notes: 1. H=High Voltage Level, L=Low Voltage Level, Hi-Z=High Impedance, X=Don't Care
2. A pull-up resistor should be provided for power-up protection.

- BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATING ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)
(Above which the useful life may be impaired. For user guidelines, not tested.)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage to Ground Potential		$-0.5 \sim+7.0$	V
DC Input Voltage		$-0.5 \sim+7.0$	V
DC Output Current		120	mA
Power Dissipation	PD	0.4	W
		0.35	W
Ambient Temperature with Power Applied	$\mathrm{T}_{\text {A }}$	-40~+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-65~+150	${ }^{\circ} \mathrm{C}$

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- DC ELECTRICAL CHARACTERISTICS
(Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V} \sim 5.5 \mathrm{~V}$)

PARAMETER	SYMBOL	TEST CONDITIONS (Note 1)	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (Note 2) } \end{array}$	MAX	UNIT
Input HIGH Voltage	$\mathrm{V}_{\text {IH }}$	Guaranteed Logic HIGH Level		2.0		V
Input LOW Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed Logic LOW Level	-0.5		0.8	V
Input HIGH Current	I_{H}	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			± 1	$\mu \mathrm{A}$
Input LOW Current	$1 /{ }_{\text {L }}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$			± 1	$\mu \mathrm{A}$
High Impedance Output Current	loz	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\text {c }}$			± 1	$\mu \mathrm{A}$
Low Impedance Output Current	IoN	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	$\mu \mathrm{A}$
Input Hysteresis at Control Pins	V_{H}			250		mV
Switch On-Resistance (Note 3)	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.0 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{ON}}=30 \mathrm{~mA} \text { or } 64 \mathrm{~mA} \end{aligned}$		4	7	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{ON}}=-15 \mathrm{~mA} \end{aligned}$		8	15	Ω

Notes: 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A, B) pin
■ POWER SUPPLY CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS (Note 1)		MIN	TYP (Note 2)	MAX	UNIT
Quiescent Power Supply Current	I_{cc}	$\mathrm{V}_{\mathrm{cc}}=$ Max .	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or V_{CC}		0.1	3.0	$\mu \mathrm{A}$
Supply Current per Input @ TTL HIGH	$\triangle I_{\text {cc }}$		$\mathrm{V}_{1 \mathrm{~N}}=3.4 \mathrm{~V}$ (Note 3)			2.5	mA

Notes: 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input ($\mathrm{V}_{\mathbb{I N}}=3.4 \mathrm{~V}$, control inputs only); A and B pins do not contribute to I_{Cc}.

- CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER (Note 1)	SYMBOL	TEST CONDITIONS (Note 1)	MIN	TYP	MAX	UNIT
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		3		pF
A/B Capacitance, Switch Off	Coff			5		pF
A/B Capacitance, Switch On	$\mathrm{C}_{\text {ON }}$			10		pF

Note: This parameter is determined by device characterization but is not production tested.

- SWITCHING CHARACTERISTICS OVER OPERATING RANGE ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$)

PARAMETER	SYMBOL	TEST CONDITIONS (Note 1)	MIN	TYP	MAX	UNIT
Propagation Delay Time Signal A to B, B to A (Note 2, 3)	$t_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}$			0.25	ns
		$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$	1.0		0.25	ns
Bus Enable Time	$t_{\text {PzH }} / t_{\text {PZL }}$	$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$			5.5	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$	1.0		4.9	ns
Bus Disable Time	$\mathrm{t}_{\text {PHZ }} / \mathrm{tpLZ}$	$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$			4.5	ns
		$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$			4.2	ns

Notes: 1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

■ TEST CIRCUIT

- SWITCH POSITIONS

Test	Switch
Open Drain Disable LOW Enable LOW	7 V
All Other Inputs	Open

Note: $\mathrm{C}_{\mathrm{L}}=$ Load Capacitance: inlcudes jig and proble capacitance.
$\mathrm{R}_{\mathrm{T}}=$ Termination Resistance: should be equal to the $\mathrm{Z}_{\text {OUT }}$ of the Pulse Generator.
■ ENABLE AND DISABLE TIMING

Notes: 1. Input Control Enable = Low; Input Control Disable=High
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz} ; \mathrm{Z}_{\text {OuT }} \leq 50 \Omega$; $\mathrm{t}_{\mathrm{F}}, \mathrm{t}_{\mathrm{R}}, \leq 2.5 \mathrm{~ns}$.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

