

ULC3702

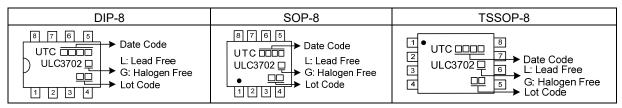
DUAL MICROPOWER CMOS VOLTAGE COMPARATORS

DESCRIPTION

The UTC **ULC3702** consists of two independent micropower voltage comparators designed to operate from a single supply and be compatible with modern HCMOS logic systems. The push-pull CMOS output stage drives capacitive loads directly without a power-consuming pull up resistor to achieve the stated response time. Eliminating the pull up resistor not only reduces power dissipation, but also saves board space and component cost. The output stage is also fully compatible with TTL requirements.

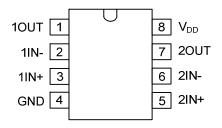
DIP-8 DIP-8 SOP-8 SOP-8 TSSOP-8

FEATURES


- * Push-Pull CMOS Output Drives Capacitive Loads Without Pull up Resistor
- * Fast Response Time t_{PLH} =2.7µs (Typ.) With 5-mV Overdrive
- * Single-Supply Operation: 3V ~ 16V

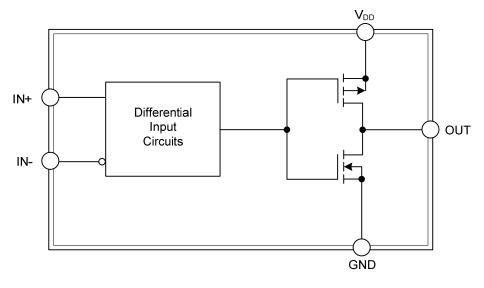
ORDERING INFORMATION

Ordering Number		Deskere	Dealing	
Lead Free	Halogen Free	Package	Packing	
ULC3702L-D08-T	ULC3702G-D08-T	DIP-8	Tube	
ULC3702L-S08-R	ULC3702G-S08-R	SOP-8	Tape Reel	
ULC3702L-P08-R	ULC3702G-P08-R	TSSOP-8	Tape Reel	


ULC3702G- <u>D08-T</u>	(1)Packing Type	(1) T: Tube, R: Tape Reel
	(2)Package Type	(2) D08: DIP-8, S08: SOP-8, P08: TSSOP-8
	(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

ULC3702


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	10UT	Channel 1 output pin		
2	1IN-	Inverting input for channel 1		
3	1IN+	Non-inverting input for channel 1		
4	GND	Ground		
5	2IN+	Non-inverting input for channel 2		
6	2IN-	Inverting input for channel 2		
7	20UT	Channel 2 output pin		
8	V _{DD}	Supply voltage		

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage Range (Note 1)		V _{DD}	-0.3 ~ 18	V
Differential Input Voltage (Note 2	2)	V _{ID}	±18	V
Input Voltage Range		VI	-0.3 ~ V _{DD}	V
Output Voltage Range		Vo	-0.3 ~ V _{DD}	V
Input Current		H	±5	mA
Output Current (Each Output)		lo	±20	mA
Power Dissipation	DIP-8		780	mW
	SOP-8	PD	420	mW
	TSSOP-8		350	mW
Operating Free-Air Temperature Range		T _A	-40 ~ +85	°C
Storage Temperature Range		T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. All voltage values, except differential voltages, are with respect to network ground.

3. Differential voltages are at IN+ with respect to IN-.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V _{DD}	3	5	16	V
Common-Mode Input Voltage	V _{IC}	-0.2		V _{DD} -1.5	V
High-Level Output Current	I _{OH}			-20	mA
Low-Level Output Current	I _{OL}			20	mA
Operating Free-Air Temperature	T _A	-40		+85	°C

■ ELECTRICAL CHARACTERISTICS (V_{DD}=5V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS (Note 1)		MIN	TYP	MAX	UNIT
Input Offset Voltage	V _{IO}	V _{DD} =5V~10V, V _{IC} =V _{ICRmin} , (Note 2)			1.2	5	mV
Input Offset Current	l _{io}	V _{IC} =2.5V			1		pА
Input Bias Current	I _{IB}	V _{IC} =2.5V			5		pА
Common Mode Input Voltage Range	VICR			0~V _{DD} -1			V
Common-Mode Rejection Ratio	CMRR	V _{IC} =V _{ICRmin}			84		dB
Supply-Voltage Rejection Ratio	k svr	V _{DD} =5V~10V			85		dB
High Level Output Voltage	V _{OH}	V _{ID} =1V, I _{OH} =-4mA		4.5	4.7		V
Low Level Output Voltage	Vol	V _{ID} =-1V, I _{OL} =4mA			210	300	mV
Supply Current (Both Comparators)	I _{DD}	Outputs Low, No Load			18	40	μA

Notes: 1. All characteristics are measured with zero common-mode voltage unless otherwise noted.

2. The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

■ SWITCHING CHARACTERISTICS (V_{DD}=5V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Propagation Delay Time, Low-to-High-Level Output (Note)		f=10kHz, C∟=50pF	Overdrive=2mV		4.5		μs
			Overdrive=5mV		2.7		μs
	t _{PLH}		Overdrive=10mV		1.9		μs
			Overdrive=20mV		1.4		μs
			Overdrive=40mV		1.1		μs
Propagation Delay Time, High-to-Low-Level Output (Note)		V _I =1.4V Step at IN+			1.1		μs
		f=10kHz, C∟=50pF	Overdrive=2mV		4		μs
			Overdrive=5mV		2.3		μs
	t _{PHL}		Overdrive=10mV		1.5		μs
			Overdrive=20mV		0.95		μs
			Overdrive=40mV		0.65		μs
		V _I =1.4V Step at IN+			0.15		μs
Fall Time	t _f	f=10kHz, C _L =50pF	Overdrive=50mV		50		ns
Rise Time	t _r	f=10kHz, C _L =50pF	Overdrive=50mV		125		ns

Note: Simultaneous switching of inputs causes degradation in output response.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

