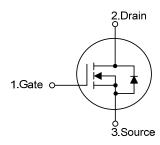
UNA03R029M Power MOSFET

85A, 30V N-CHANNEL POWERTRENCH MOSFET

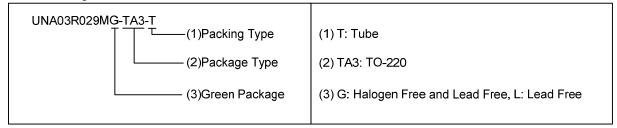
DESCRIPTION

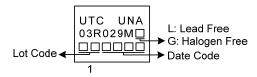

The UTC **UNA03R029M** is an N-channel MOSFET, it uses UTC's advanced technology to provide the customers with a minimum on state resistance and low gate charge, etc.

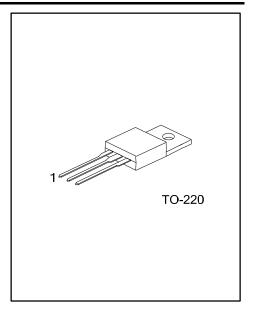
The UTC **UNA03R029M** is suitable for DC/DC converters in computing, servers, and POL, etc.

■ FEATURES

- * $R_{DS(ON)}$ < 2.9 m Ω @ V_{GS} =10V, I_{D} =20A $R_{DS(ON)}$ < 3.7 m Ω @ V_{GS} =4.5V, I_{D} =20A
- * Very low R_{DS(ON)}
- * Low gate charge
- * High current capability


■ SYMBOL


ORDERING INFORMATION


Ordering Number		Dookone	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UNA03R029ML-TA3-T	UNA03R029MG-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 8

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Orain-Source Voltage		V_{DSS}	30	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current (Note 6)	T _C =25°C		105	Α
Continuous Drain Current (Note 6)	T _C =100°C	l _D	82	Α
Pulsed Drain Current (Note 4)		I _{DM}	400	Α
Cantinuous Drain Current	T _A =25°C		20	Α
Continuous Drain Current	T _A =70°C	I _{DSM}	16	Α
Avalanche Current (Note 4)		I _{AS}		
Single Pulse Avalanche Energy (No	te 4, 7)	F, 7) E _{AS} 431		mJ
	T _C =25°C	Б	176	W
Power Dissipation (Note 3)	T _C =100°C	P _D	88	W
Device Discipation (Nata 2)	T _A =25°C		1.9	W
Power Dissipation (Note 2)	T _A =70°C	P _D	1.2	W
Junction Temperature		TJ	J -55 ~ +150	
Storage Temperature Range		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

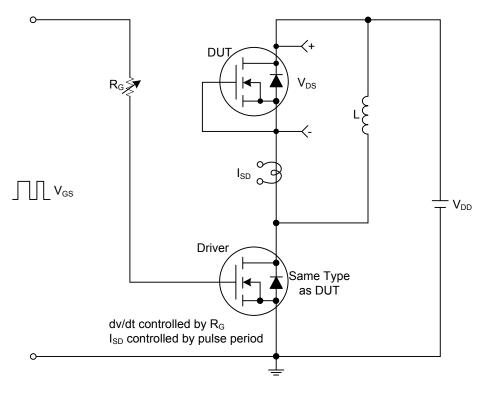
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

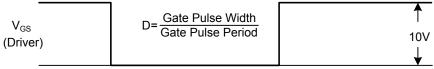
- 2. The value of θ_{JA} is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on θ_{JA} and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.
- 3. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 4. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- 5. The θ_{JA} is the sum of the thermal impedence from junction to case R θ JC and case to ambient.
- 6. The maximum current rating is package limited.
- 7. L=0.2mH, I_{AS} =68A, V_{DD} =30V, R_{G} =25 Ω , starting T_{J} =25 $^{\circ}$ C.

■ THERMAL RESISTANCES CHARACTERISTICS

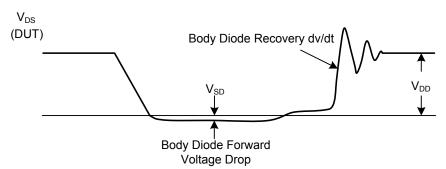
PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient	t≤10S	θ_{JA}		12	15	°C/W
	steady state			54	65	°C/W
Junction to Case	steady state	θ_{JC}		0.7	0.85	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise noted)

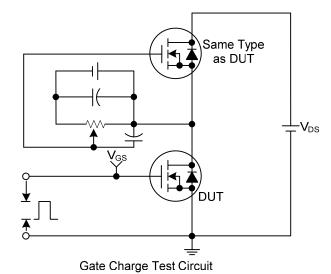

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
STATIC PARAMETERS								
Drain-Source Breakdown Voltage	BV_{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V		
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =30V, V_{GS} =0V			1	μΑ		
Gate-Source Leakage Current	I_{GSS}	V_{DS} =0V, V_{GS} =±20V			100	nA		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.0		3.0	V		
Static Drain-Source On-State Resistance	Б	V_{GS} =10V, I_D =20A			2.9	mΩ		
	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A			3.7	mΩ		
DYNAMIC PARAMETERS					a			
Input Capacitance	C_{ISS}			12600		pF		
Output Capacitance	Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		2360		pF		
Reverse Transfer Capacitance	C_{RSS}			1580		рF		
SWITCHING PARAMETERS								
Total Gate Charge	Q_G	\\ -20\\ \\ -10\\ -1.0\		400		nC		
Gate to Source Charge	Q_GS	V _{DS} =20V, V _{GS} =10V, I _D =1.0A		15		nC		
Gate to Drain Charge	Q_GD	I _G =1mA (Note 1, 2)		60		nC		
Turn-ON Delay Time	$t_{D(ON)}$			110		ns		
Rise Time	t_R	V_{DS} =20V, V_{GS} =10V, I_{D} =1.0A,		360		ns		
Turn-OFF Delay Time	$t_{D(OFF)}$	R _G =25Ω (Note 1, 2)		2700		ns		
Fall-Time	t_{F}			1500		ns		
SOURCE- DRAIN DIODE RATINGS AND	CHARACTE	RISTICS						
Maximum Body-Diode Continuous	ı				105	Α		
Current (Note 3)	Is				105	A		
Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _S =1A			1.00	V		
Body Diode Reverse Recovery Time	t _{rr}	I _F =20A, dI/dt=100A/μs		225		ns		
Body Diode Reverse Recovery Charge	Q_{rr}	-20A, αι/αι-100A/μs		880		nC		

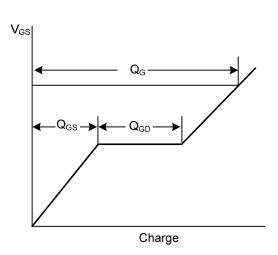

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.

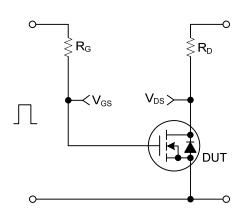
^{2.} Essentially independent of operating temperature.


^{3.} The maximum current rating is package limited.

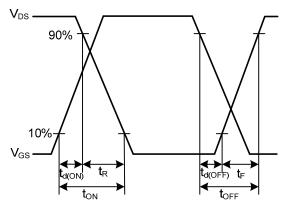
■ TEST CIRCUITS AND WAVEFORMS

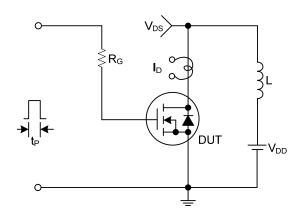


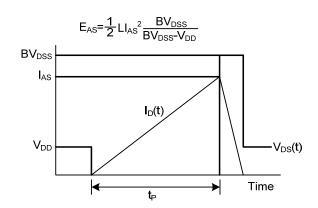



Peak Diode Recovery dv/dt Test Circuit and Waveforms

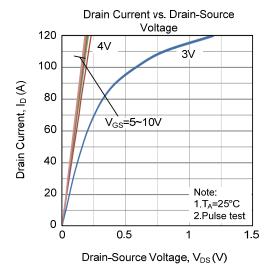
■ TEST CIRCUITS AND WAVEFORMS

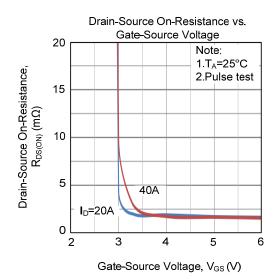


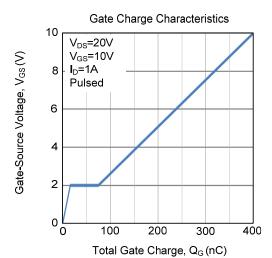

Gate Charge Waveforms

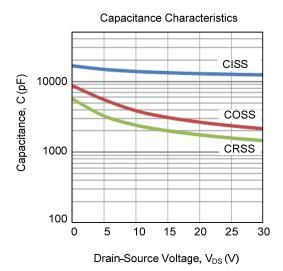

Resistive Switching Test Circuit

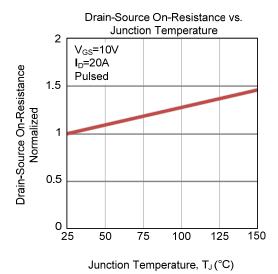
Resistive Switching Waveforms

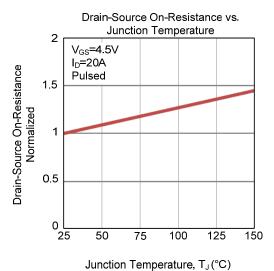


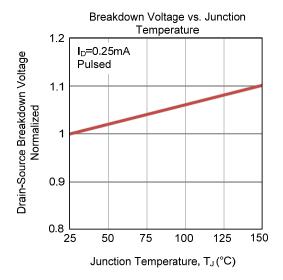

Unclamped Inductive Switching Test Circuit

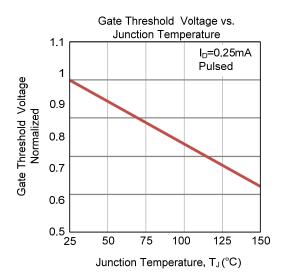


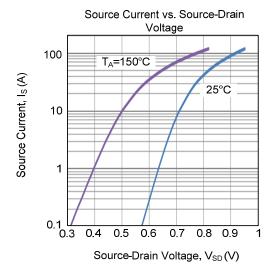

Unclamped Inductive Switching Waveforms

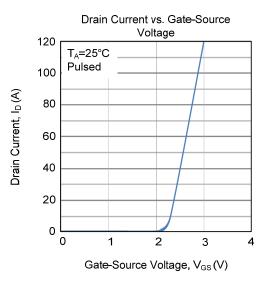

■ TYPICAL CHARACTERISTICS

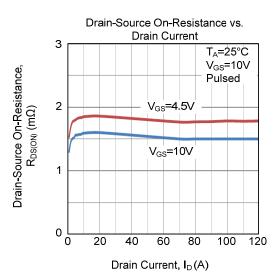


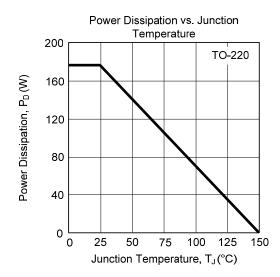


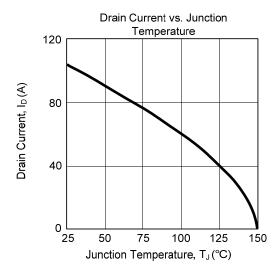


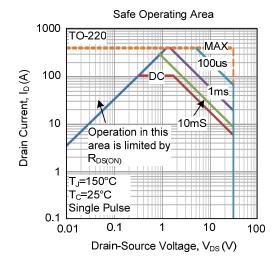





■ TYPICAL CHARACTERISTICS (Cont.)







■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.