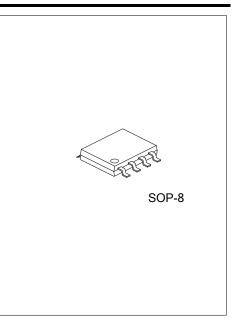


UTC UNISONIC TECHNOLOGIES CO., LTD


Preliminary

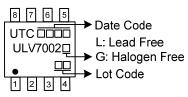
1.5V, 0.23µA/CH, ULTRALOW POWER, RAIL-TO-RAIL **INPUT/OUTPUT DUAL CMOS OPERATIONAL AMPLIFIER**

DESCRIPTION

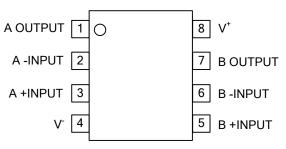
The UTC ULV7002 is dual ultralow power operational amplifiers designed to extend battery life and performance for portable applications. The operating voltage range of 1.5V to 5.5V and supply current of 0.23µA/ch (dual) typical, with stable over temperature and input voltage change make them deal for micropower oxygen sensors, gas sensors and remote sensor applications.

In addition to the ultralow power and low operating voltage, rail-to-rail input and output, input offset voltage of 3.0mV, input bias current of 1pA typical and ability to drive 470pF loads, make the UTC ULV7002 series ideal when requiring excellent performance in battery powered applications.

FEATURES

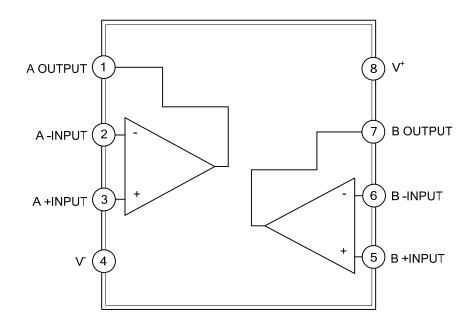

- * Supply Current: 0.23µA/ch typ.
- * Operating Voltage: 1.5V~5.5V
- * Input Offset Voltage: 3.0mV max.
- * Input Bias Current: 1pA typ.
- * Rail-to-Rail Input/Output
- * CMOS Technology

ORDERING INFORMATION


Ordering	Number	Daakaga	Dealving	
Lead Free	Halogen Free	Package	Packing	
ULV7002L-S08-R	ULV7002G-S08-R	SOP-8	Tape Reel	

ULV7002G-S08-R		
	(1) R: Tape Reel	
(2)Package Type	(2) S08: SOP-8	
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free	

MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	A OUTPUT	Output pin of A AMP
2	A -INPUT	Invert input pin of A AMP
3	A +INPUT	Non-invert input of A AMP
4	V	Negative (lowest) power supply
5	B +INPUT	Non-invert input of B AMP
6	B -INPUT	Invert input pin of B AMP
7	B OUTPUT	Output pin of B AMP
8	V^+	Positive (highest) power supply

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ - V ⁻	7	V
Differential Input Voltage (Note 1)	V _{ID}	±7 (Note 2)	V
Input Voltage	V _{IN}	V ⁻ - 0.3 ~ V ⁺ +0.3	V
Power Dissipation (Note 3)	PD	500	mW
Operating Temperature Range	T _{OPR}	-40 ~ +105	°C
Storage Temperature Range	T _{STG}	-55 ~ +125	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Differential voltage is the voltage difference between +INPUT and -INPUT.

3. For supply voltage less than +7V, the absolute maximum rating is equal to the supply voltage.

4. Power dissipation is the power that can be consumed by the IC at T_A=25°C, and is the typical measured value based on JEDEC condition. When using the IC over T_A=25°C subtract the value [mW/°C]=P_D/ (T_{STG}(Max.)-25) per temperature.

2-layer: EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layers, FR-4) mounting.

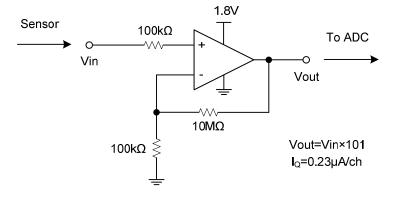
■ **RECOMMENDED OPERATING CONDITION** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V ⁺ - V ⁻		1.5		5.5	V

ELECTRICAL CHARACTERISTICS

 $(V^{+}=5V, V=0V, V_{CM}=2.5V, R_{L}=100k\Omega$ to 2.5V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC CHARACTERISTICS						
Supply Current (All Channel)	lq	No Signal		0.46	0.76	μA
Input Offset Voltage	V _{IO}	V _{CM} =0V		0.5	3.0	mV
Input Bias Current	Ι _Β			1		pА
Input Offset Current	I _{IO}			1		pА
Voltage Gain	Av	V _{OUT} =0.5V~4.5V	70	100		dB
Common-Mode Rejection Ratio	CMR	V _{CM} =0V~5V	60	80		dB
Supply Voltage Rejection Ratio	SVR	V ⁺ =1.5V~5.5V, V _{CM} =0V	55	90		dB
Maximum Output Voltage	V _{OH}	R_L =100k Ω to 2.5V	4.9	4.95		V
	V _{OL}	R_L =100k Ω to 2.5V		0.05	0.1	V
Common-Mode Input Voltage Range	V _{ICM}	CMR≥60dB	0		5	V
AC CHARACTERISTICS						
Slew Rate	SR	G _V =0dB, C _L =20pF, V _{IN} =1Vpp		1		V/ms
Unity-Gain Frequency	f⊤	G_V =20dB, C _L =20pF		1.1		kHz
Phase Margin	Φ _M	C _L =20pF		60		deg
Gain Margin	G _M	C _L =20pF		30		dB
Equivalent Input Noise Voltage	V _{NI}	f=100Hz		700		nV/√Hz


■ ELECTRICAL CHARACTERISTICS

(V⁺=1.8V, V⁻=0V, V_{CM}=0.9V, R_L=100k Ω to 0.9V, T_A=25°C unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC CHARACTERISTICS						
Supply Current (All Channel)	Ι _Q	No Signal		0.42	0.72	μA
Input Offset Voltage	V _{IO}	V _{CM} =0V		0.5	3.0	mV
Input Bias Current	Ι _Β			1		pА
Input Offset Current	I _{IO}			1		pА
Voltage Gain	Av	V _{OUT} =0.5V~1.3V	70	100		dB
Common-Mode Rejection Ratio	CMR	V _{CM} =0V~1.8V	55	80		dB
Supply Voltage Rejection Ratio	SVR	V ⁺ =1.5V~5.5V, V _{CM} =0V	55	90		dB
Maximum Output Voltage	V _{OH}	R _L =100kΩ to 0.9V	1.7	1.75		V
	V _{OL}	R _L =100kΩ to 0.9V		0.05	0.1	V
Common-Mode Input Voltage Range	VICM	CMR≥55dB	0		1.8	V
AC CHARACTERISTICS						
Slew Rate	SR	G_V =0dB, C _L =20pF, V _{IN} =1Vpp		0.9		V/ms
Unity-Gain Frequency	f⊤	G _V =20dB, C _L =20pF		1		kHz
Phase Margin	Φ _M	C∟=20pF		60		deg
Gain Margin	G _M	C∟=20pF		30		dB
Equivalent Input Noise Voltage	V _{NI}	f=100Hz		800		nV/√Hz

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

