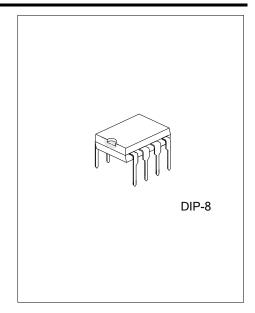
UNISONIC TECHNOLOGIES CO., LTD

CA3080

Preliminary

LINEAR INTEGRATED CIRCUIT

2MHz, OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)

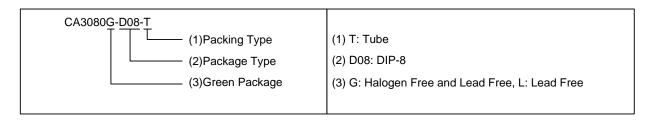

■ DESCRIPTION

The UTC **CA3080**, a high-performance operational -transconductance-amplifier (OTA) with Gatable-Gain Blocks, can be suitable applied in much several different conditions.

The UTC **CA3080**'s characteristics are specifically controlled for applications such as sample-hold, gain-control, multiplexing, etc.

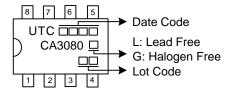
The UTC **CA3080** type has differential input and a single-ended, push-pull, class A output. In addition, this type has an amplifier bias input which may be used either for gating or for linear gain control. This type also has a high output impedance and it's transconductance (g_M) is directly proportional to the amplifier bias current (I_{ABC}) .

The UTC **CA3080** type is notable for its excellent slew rate $(50V/\mu s)$, which makes it especially useful for multiplexer and fast unity-gain voltage followers. This type is especially applicable for multiplexer applications because power is consumed only when the devices are in the "ON" channel state.

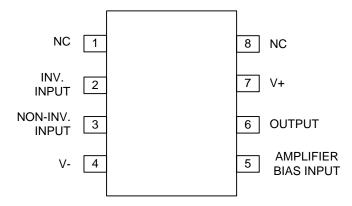


■ FEATURES

- * Slew Rate (Unity Gain, Compensated): 50V/µs
- * Adjustable Power Consumption: 10µW~30µW
- * Flexible Supply Voltage Range: ±2V~ ±15V
- * Fully Adjustable Gain: 0 to g_MR_L Limit

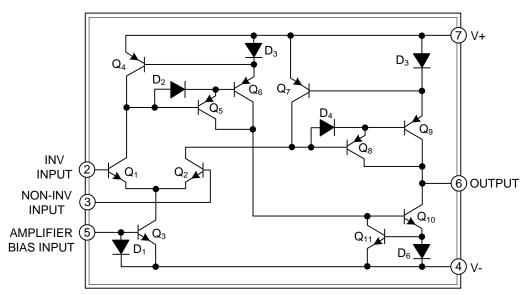

■ ORDERING INFORMATION

Ordering	Package	Packing	
Lead Free	Lead Free Halogen Free		
CA3080L-D08-T	CA3080G-D08-T	DIP-8	Tube



<u>www.unisonic.com.tw</u> 1 of 6

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1, 8	NC	NC
2	INV- INPUT	Negative input
3	NON-INV INPUT	Positive input
4	V-	Negative supply voltage
5	AMPLIFIER BIAS INPUT	Bias input
6	OUTPUT	output
7	V+	Positive supply voltage
8	NC	NC

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage (Between V+ and V- Terminal)	V _{CC}	36	V
Differential Input Voltage	V_{DI}	5	V
Input Voltage	V_{IN}	V+ ~ V-	
Input Signal Current	I _{SC}	1	mA
Amplifier Bias Current	I _{ABC}	2	mA
Maximum Junction Temperature (Plastic Package)	TJ	+150	°C
Maximum Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Temperature Range	T _{STG}	-40 ~ +125	ů

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Thermal Resistance (Typical)	θ_{JA}	130	°C/W

Note: θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

■ ELECTRICAL CHARACTERISTICS

For Equipment Design, $V_{\text{SUPPLY}} = \pm 15V$, Unless Otherwise Specified

Tor Equipment Design, VSUP	PLY10V,	0111000 011101	moo opoomou				
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage		V	I _{ABC} =5µA		0.3	2	mV
		Vos	I _{ABC} =500μA		0.4	2	mV
Input Offset Voltage Change)	ΔV_{OS}	I _{ABC} =500μΑ~5μΑ		0.1		mV
put Offset Voltage Positive		$\Delta V_{IO/V+}$	I -500A			150	μV/V
Sensitivity	Negative	$\Delta V_{IO/V}$	I _{ABC} =500μA			150	μV/V
Input Offset Current			0.6	μΑ			
Input Bias Current		I_{B}	I _{ABC} =500μA		2	5	μΑ
Differential Input Current		I _{DI}	I _{ABC} =0, V _{DIFF} =4V		0.008	5	nA
Amplifier Bias Voltage		V_{BIAS}	I _{ABC} =500μA		0.71		V
Input Resistance		R_{l}	I _{ABC} =500μA		36		kΩ
Input Capacitance		Cı	I_{ABC} =500 μ A, f = 1MHz		5		pF
Input-to-Output Capacitance	•	C _I to C _O	I_{ABC} =500 μ A, f = 1MHz		0.024		pF
Common-Mode Input-Voltage		V	- F00.1A	12~	13.6~		V
Range		V_{ic}	I _{ABC} =500μA	-12	-14.5		V
Forward Transconductance		am	I _{ABC} =500μA	6700	9600	13000	µmho
(Large Signal)		gm		6700	9000	13000	μππο
Output Capacitance		Co	I_{ABC} =500 μ A, f = 1MHz		10		pF
Output Resistance	Output Resistance		I _{ABC} =500μA		15		ΜΩ
Peak Output Current		1-	$I_{ABC}=5\mu A, R_L=0\Omega$	3	5	7	μA
reak Output Current		lo	I_{ABC} =500 μ A, R_L =0 Ω	350	500	650	μΑ
	Positive	V _{Om}	I _{ABC} =5μA, R _L =∞		13.8		V
Peak Output Voltage	Negative		IABC=5µA, KL-=		-14.5		V
Feak Output Voltage	Positive		L	12	13.5		V
	Negative		I _{ABC} =500μA, R _L =∞	-12	-14.4		V
Amplifier Supply Current		Icc	I _{ABC} =500μA	0.8	1.1	1.3	mΑ
Device Dissipation		P_D	I _{ABC} =500μA	24	30	36	mW
Magnitude of Leakage Current		I _{IEAK}	I _{ABC} =0, V _{TP} =0		0.08	5	nA
			I _{ABC} =0, V _{TP} =36V		0.3	5	nA
Propagation Delay T _P		T _P	I _{ABC} =500μA		55		ns
Common-Mode Rejection Ratio CMRR		CMRR	I _{ABC} =500μA	80	110		dB
Open-Loop Bandwidth		BW	I _{ABC} =500μA		2		MHz
Slew Rate		CD	Uncompensated		75		V/µs
		SR	Compensated		50		V/µs
-							

■ TYPICAL APPLICATION CIRCUIT

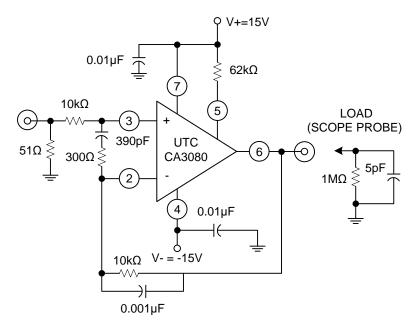
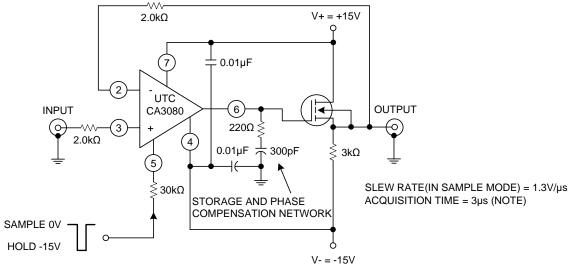



Figure 1. Schematic diaghram of the UTC CA3080 in a unity-gain voltage follower configuration

Note: Time required for output to settle within $\pm 3mV$ of a 4V step.

Figure 2. Schematic diagram of the UTC CA3080 in a sample-hold configuration

■ TYPICAL APPLICATION CIRCUIT (Cont.)

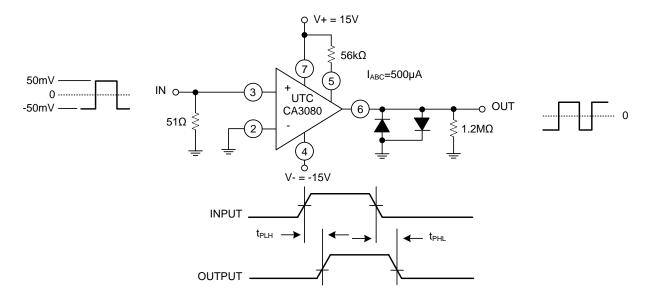


Figure 3. Propagation delay test circuit and associated waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.