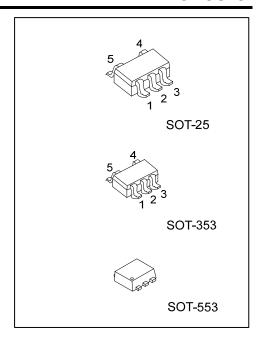
U74CBTLV1G125

CMOS IC

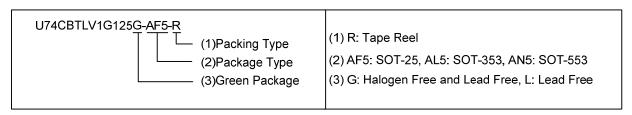

LOW-VOLTAGE SINGLE FET BUS SWITCH

DESCRIPTION

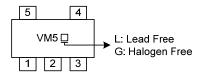
The **U74CBTLV1G125** provides a single high-speed line switch. The switch is disabled when the output-enable (\overline{OE}) input is high.

This device is fully specified for partial-power-down applications using I_{OFF} . The I_{OFF} feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

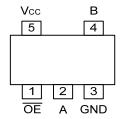
To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.



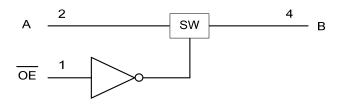
■ FEATURES

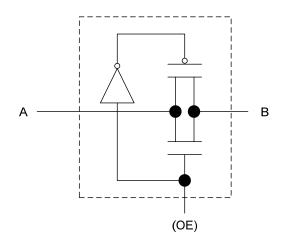

- * 5 Ω Switch Connection Between Two Ports
- * Rail-to-Rail Switching on Data I/O Ports
- * I_{OFF} Supports Partial-Power-Down Mode

■ ORDERING INFORMATION


Ordering	Dealters	Doolsing	
Lead Free	Package	Packing	
U74CBTLV1G125L-AF5-R U74CBTLV1G125G-AF5-R		SOT-25	Tape Reel
U74CBTLV1G125L-AL5-R U74CBTLV1G125G-AL5-R		SOT-353	Tape Reel
U74CBTLV1G125L-AN5-R	U74CBTLV1G125G-AN5-R	SOT-553	Tape Reel

■ MARKING


■ PIN CONFIGURATION


■ FUNCTION TABLE (each bus switch)

INPUT OE	FUNCTION
L	A port = B port
Н	Disconnect

■ LOGIC DIAGRAM (positive logic)

■ SIMPLIFIED SCHEMATIC(each FET switch)

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.5 ~ 4.6	V
Input Voltage	Vı	-0.5 ~ 4.6	V
Continuous Channel Current		128	mA
Input Clamp Current(V _{I/O} <0)	I _{IK}	-50	mA
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	SOT-25		230	°C/W
	SOT-353	θ_{JA}	350	°C/W
	SOT-553		370	°C/W

■ RECOMMENDED OPERATING COMDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V _{CC}		2.3		3.6	V
High-control input voltage	I V	V _{CC} =2.3V~2.7V	1.7			٧
		V _{CC} =2.7V~3.6V	2			٧
Low-control input voltage	\/	V _{CC} =2.3V~2.7V			0.7	V
		V _{CC} =2.7V~3.6V			8.0	V
Ambient Operating Temperature	T _A		-40		+125	°C

Note: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

■ STATIC CHARACTERISTICS (Unless otherwise specified)

PARAMETER S		CVMDOL	TEST CONDITIONS		Т	_A =25°(<u> </u>	T _A =-40~+125°C			LINIT	
		SYMBOL			MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Digital Input Diode	e Voltage	V_{IK}	V _{CC} =3V, I	=-18mA				-1.2			-1.2	V
Input Leakage Cu	rrent	I _I	V _{CC} =3.6V,	V _I =V _{CC} c	r GND			±1			±100	μΑ
Power off Leakage	e Current	I _{off}	$V_{CC}=0, V_1 c$	or V _O =0 to	3.6V			10			10	μΑ
Quiescent Supply	Current	lcc	V_{CC} =3.6V, V_{I} = V_{CC} or GND, I_{O} =0					10			200	μΑ
Chiescent Supply	Control inputs		V _{CC} =3.6V, One input at 3V, Other inputs at V _{CC} or GND					300			5000	μΑ
			V _{CC} =2.3V	\/_O\/	I _I =64mA		7	10			15	Ω
			V _{CC} =2.3V Typ. at	V _I =UV	I _I =24mA		7	10			15	Ω
Desister between	tuo porto	R_{ON}	V _{CC} =2.5V	V _I =1.7V,	I _I =-15mA		15	25			38	Ω
Resistor between two ports	(Note 3)		V 0V	I _I =64mA		5	7			11	Ω	
			V _{CC} =3V	V _I =0V	I _I =24mA		5	7			11	Ω
			V _I =2.4V,	I _I =-15mA		10	15			25.5	Ω	

Notes: 1. All typical values are at V_{CC} =3.3V (unless otherwise noted), T_A =25°C.

- 2. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.
- 3. Measured by the voltage drop between A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

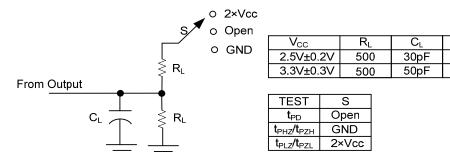
■ DYNAMIC CHARACTERISTICS

See Fig. 1 and Fig. 2 for test circuit and waveforms.

DADAMETED	SYMBOL	TECT COMPITIONS	Т	_ _A =25°(С	T _A =-	LINIT		
PARAMETER SYMI		TEST CONDITIONS		TYP	MAX	MIN	TYP	MAX	UNIT
From input (A or B) to	t _{pd}	V _{CC} =2.5V±0.2V			0.21			0.4	ns
output (B or A)	(t_{PLH}/t_{PHL})	V _{CC} =3.3V±0.3V			0.25			0.5	ns
From input ($\overline{\rm OE}$) to output	t _{en}	V _{CC} =2.5V±0.2V	1		5.5			6.5	ns
(A or B)	(t_{PZL}/t_{PZH})	V _{CC} =3.3V±0.3V	1		5.5			6.5	ns
From input (OE) to output	t _{dis}	V _{CC} =2.5V±0.2V	1		5			6.3	ns
(A or B)	(t_{PLZ}/t_{PHZ})	V _{CC} =3.3V±0.3V	1		4.1			5.4	ns

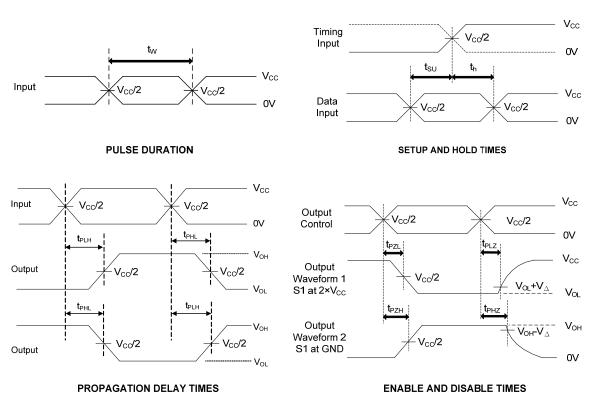
Note: The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance of 50 pF, when driven by an ideal voltage source (zero output impedance).

■ **OPERATING CHARACTERISTICS** (T_A=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Control input Capacitance	C	V _I =3V or 0		2.5		pF
I/O Capacitance (OFF)	C _{IO(OFF)}	V_0 =3V or 0, \overline{OE} = V_{CC}		7		pF

 $\overline{V\Delta}$

0.15V


0.3V

■ TEST CIRCUIT AND WAVEFORMS

Note: C_L includes probe and jig capacitance.

Fig. 1 Load circuitry for switching times

Note: All input pulses are supplied by generators having the following characteristics: t_r , $t_f \le 2ns$; $P_{RR} \le 10MHz$; $Z_0 = 50\Omega$.

Fig. 2 Propagation delay from input(A) to output(B) and Output transition time

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.