## UNISONIC TECHNOLOGIES CO., LTD

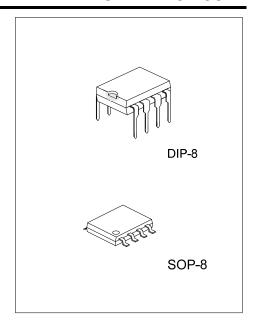
CA3140

**Preliminary** 

#### LINEAR INTEGRATED CIRCUIT

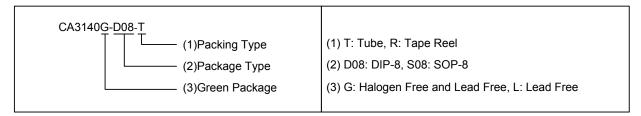
# 4.5MHz, OPERATION AMPLIFIER WITH MOSFET INPUT/BIPOLAR OUTPUT

#### DESCRIPTION

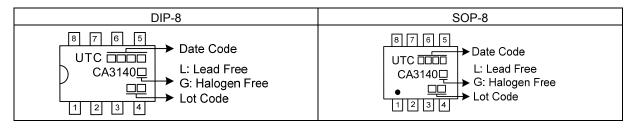

The UTC **CA3140** is integrated circuit operational amplifier that combine the advantages of high voltage PMOS transistors with high voltage bipolar transistors on a single monolithic chip.

The UTC CA3140 operational amplifier feature gate protected MOSFET (PMOS) transistors in the input circuit to provide very high input impedance, very low input current, and high speed performance. The UTC CA3140 operates at supply voltage from 4V to 36V (either single or dual supply). This is internally phase compensated to achieve stable operation in unity gain follower operation, and additionally, has access terminal for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS field effect transistors in the input stage results in common mode input voltage capability down to 0.5V below the negative supply terminal, an important attribute for single supply applications. The output stage uses bipolar transistors and includes built-in protection against damage from load terminal short circuiting to either supply rail or to ground.

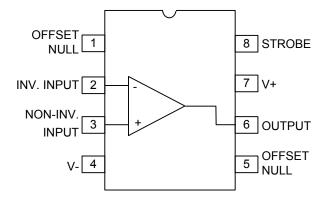
The UTC  ${\sf CA3140}$  is intended for operation at supply voltages up to 36V ( $\pm$ 18V).


#### ■ FEATURES

- \* MOSFET Input Stage
- Very High Input Impedance  $(Z_{IN})$  -1.5T $\Omega$  (Typ)
- Very Low Input Current (I<sub>I)</sub> -10pA (Typ) at ±15V
- Wide Common Mode Input Voltage Range (V<sub>ICR</sub>) Can be SWUNG 0.5V Below Negative Supply Voltage Rail



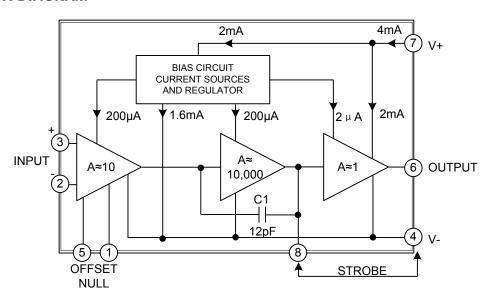

#### **■ ORDERING INFORMATION**


| Ordering                    | Dookono       | Dooking |           |
|-----------------------------|---------------|---------|-----------|
| Lead Free Halogen Free      |               | Package | Packing   |
| CA3140L-D08-T CA3140G-D08-T |               | DIP-8   | Tube      |
| CA3140L-S08-R               | CA3140G-S08-R | SOP-8   | Tape Reel |



#### ■ MARKING




#### **■ PIN CONFIGURATION**



### **■ PIN DESCRIPTION**

| PIN NO. | PIN NAME       | DESCRIPTION                                |
|---------|----------------|--------------------------------------------|
| 1       | OFFSET NULL    | Offset null                                |
| 2       | INV. INPUT     | Inverting input                            |
| 3       | NON-INV. INPUT | Non-inverting input                        |
| 4       | V-             | Negative power supply                      |
| 5       | OFFSET NULL    | Offset null                                |
| 6       | OUTPUT         | Output                                     |
| 7       | V+             | Positive power supply                      |
| 8       | STROBE         | A supplementary phase compensated terminal |

#### ■ BLOCK DIAGRAM



### ABSOLUTE MAXIMUM RATING

| PARAMETER                                       | SYMBOL           | RATINGS            | UNIT |
|-------------------------------------------------|------------------|--------------------|------|
| DC Supply Voltage (Between V+ and V- Terminals) | $V^{+}_{MAX}$    | 36                 | V    |
| Differential Mode Input Voltage                 | $V_{DM}$         | 8                  | V    |
| DC Input Voltage                                | $V_{IN}$         | (V+ +8V) ~ (V0.5V) | V    |
| Input Terminal Current                          | I <sub>IN</sub>  | 1                  | mA   |
| Output Short Circuit Duration∞ (Note 2)         |                  | Indefinite         |      |
| Maximum Junction Temperature (Plastic Package)  | $T_J$            | +150               | °C   |
| Operating Conditions Temperature Range          | $T_{OTR}$        | -40 ~ +125         | °C   |
| Maximum Storage Temperature Range               | T <sub>STG</sub> | -65 ~ +150         | °C   |

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

### **■ THERMAL DATA**

| PARAMETER           |       | SYMBOL | RATINGS | UNIT |
|---------------------|-------|--------|---------|------|
| hundian ta Ambiant  | DIP-8 | 0      | 115     | °C/W |
| Junction to Ambient | SOP-8 | ÐJA    | 165     | °C/W |

#### ■ ELECTRICAL CHARACTERISTICS

 $(V_{SUPPLY} = \pm 15V, T_A = 25^{\circ}C)$ 

| (*36FFET =:01, 1A =00)                                            |                   |                                                                                                    |              |     |      |     |         |
|-------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------|--------------|-----|------|-----|---------|
| PARAMETER                                                         | SYMBOL            | TEST COND                                                                                          | ITIONS       | MIN | TYP  | MAX | UNIT    |
| Input Offset Voltage Adjustment<br>Resistor                       |                   | Typical Value of Resistor<br>Between Terminals 4 and 5<br>or 4 and 1 to Adjust Max V <sub>IO</sub> |              |     | 4.7  |     | kΩ      |
| Input Resistance                                                  | R <sub>I</sub>    | or 4 and 1 to Aujt                                                                                 | JSC WILL VIO |     | 1.5  |     | ΤΩ      |
| Input Capacitance                                                 | Cı                |                                                                                                    |              |     | 4    |     | pF      |
| Output Resistance                                                 | Ro                |                                                                                                    |              |     | 60   |     | Ω       |
| Equivalent Wideband Input Noise Voltage                           | e <sub>N</sub>    | BW=140kHz, $R_S$ =1M $\Omega$                                                                      |              |     | 48   |     | μV      |
| Equivalent Input Noise Voltage                                    |                   | R <sub>S</sub> =100Ω, f=1kHz                                                                       |              |     | 40   |     | nV/ √Hz |
|                                                                   | e <sub>N</sub>    | R <sub>S</sub> =100Ω, f=10kHz                                                                      |              |     | 12   |     | nV/ √Hz |
| Short Circuit Current to Opposite                                 | I <sub>OM</sub> + | Source                                                                                             |              |     | 33   |     | mA      |
| Supply                                                            | I <sub>OM</sub> - | Sink                                                                                               |              |     | 20   |     | mA      |
| Gain-Bandwidth Product                                            | f <sub>T</sub>    |                                                                                                    |              |     | 4.5  |     | MHz     |
| Slew Rate                                                         | SR                |                                                                                                    |              |     | 2    |     | V/µs    |
| Sink Current From Terminal 8 To<br>Terminal 4 to Swing Output Low |                   |                                                                                                    |              |     | 220  |     | μA      |
| Transient Response                                                | t <sub>r</sub>    | $R_L = 2k\Omega$ ,                                                                                 | Rise Time    |     | 0.08 |     | μs      |
|                                                                   | Os                | C <sub>L</sub> = 100pF                                                                             | Overshoot    |     | 10   |     | %       |
|                                                                   |                   | $R_L = 2k\Omega$ ,                                                                                 | To 1mV       |     | 4.5  |     | μs      |
| Settling Time at 10VP-P                                           | t <sub>S</sub>    | C <sub>L</sub> = 100pF<br>Voltage Follower                                                         | To 10mV      |     | 1.4  |     | μs      |

<sup>2.</sup> Short circuit may be applied to ground or to either supply.

#### **■ ELECTRICAL CHARACTERISTICS**

(For Equipment Design, at V<sub>SUPPLY</sub> = ±15V, T<sub>A</sub> = 25°C, Unless Otherwise Specified)

| (1 of Equipment Boolgin, at V30FFL)                        | <u> </u>                 | o, omese canonines ope |     |       |     |       |
|------------------------------------------------------------|--------------------------|------------------------|-----|-------|-----|-------|
| PARAMETER                                                  | SYMBOL                   | TEST CONDITIONS        | MIN | TYP   | MAX | UNIT  |
| Input Offset Voltage                                       | V <sub>IO</sub>          |                        |     | 5     | 15  | mV    |
| Input Offset Current                                       | I <sub>IO</sub>          |                        |     | 0.5   | 30  | pА    |
| Input Current                                              | II                       |                        |     | 10    | 50  | pА    |
| Large Signal Voltage Gain (Note 3)                         | A <sub>OL</sub>          |                        | 86  | 95    |     | dB    |
| Common Mode Rejection Ratio                                | CMRR                     |                        | 70  | 85    |     | dB    |
| Common Mode Input Voltage Range                            | $V_{ICR}$                |                        | -15 |       | 12  | V     |
| Power-Supply Rejection Ratio, $\Delta V_{IO}/\Delta V_{S}$ | PSRR                     |                        | 76  | 100   |     | dB    |
| Max Output Voltage (Note 4)                                | V <sub>OM</sub> +        | $R_L=2k\Omega$         | +12 | 13    |     | V     |
|                                                            | V <sub>OM</sub> -        | $R_L=2k\Omega$         | -14 | -14.4 |     | V     |
| Supply Current                                             | l+                       |                        |     | 4     | 6   | mA    |
| Input Offset Voltage Temperature Drift                     | $\Delta V_{IO}/\Delta_T$ |                        |     | 8     |     | μV/°C |

Notes: 1. At  $V_{O}$  = 26V  $_{P\text{-}P},$  +12V, -14V and  $R_{L}$  = 2k  $\!\Omega.$ 

2. At  $R_L = 2k\Omega$ .

#### **■ ELECTRICAL CHARACTERISTICS**

(For Design Guidance, at V+ = 5V, V- = 0V, T<sub>A</sub> = 25°C, Unless Otherwise Specified)

| PARAMETER                                                         | SYMBOL            | TEST CONDITIONS | MIN | TYP  | MAX | UNIT |
|-------------------------------------------------------------------|-------------------|-----------------|-----|------|-----|------|
| Input Offset Voltage                                              | V <sub>IO</sub>   |                 |     | 5    |     | mV   |
| Input Offset Current                                              | $ I_{10} $        |                 |     | 0.1  |     | pА   |
| Input Current                                                     | l <sub>t</sub>    |                 |     | 2    |     | pА   |
| Input Resistance                                                  | $R_{l}$           |                 |     | 1    |     | TΩ   |
| Large Signal Voltage Gain                                         | A <sub>OL</sub>   |                 |     | 95   |     | dB   |
| Common Mode Rejection Ratio                                       | CMRR              |                 |     | 85   |     | dB   |
| Common Mode Input Voltage Range                                   | \/                |                 |     | 0    |     | V    |
|                                                                   | $V_{ICR}$         |                 |     | 2.6  |     | V    |
| Power Supply Rejection Ratio                                      | PSRR<br>ΔVIO/ΔVS  |                 |     | 80   |     | dB   |
| Mariana O to 10 and                                               | V <sub>OM</sub> + | $R_L=2k\Omega$  |     | 3    |     | V    |
| Maximum Output Current                                            | $V_{OM}$ -        | $R_L=2k\Omega$  |     | 0.13 |     | V    |
| Maximum Output Current                                            | I <sub>OM</sub> + | Source          |     | 10   |     | mA   |
| Maximum Output Current                                            | I <sub>OM</sub> - | Sink            |     | 1    |     | mA   |
| Slew Rate                                                         | SR                |                 |     | 2    |     | V/µs |
| Gain-Bandwidth Product                                            | $f_{T}$           |                 |     | 3.7  |     | MHz  |
| Supply Current (See Figure 32)                                    | <b> </b> +        |                 |     | 8.0  |     | mA   |
| Sink Current from Terminal 8 to<br>Terminal 4 to Swing Output Low |                   |                 |     | 200  |     | μΑ   |

#### ■ TYPICAL APPLICATIONS

#### Offset Voltage Nulling

The input offset voltage can be nulled by connecting a  $10k\Omega$  potentiometer between Terminals 1 and 5 and returning its wiper arm to terminal 4, see Figure 1A. This technique, however, gives more adjustment range than required and therefore, a considerable portion of the potentiometer rotationis not fully utilized. Typical values of series resistors (R) that may be placed at either end of the potentiometer, see Figure 1B, to optimize its utilization range are given in the Electrical Specifications table. An alternate system is shown in Figure 1C. This circuit uses only one additional resistor of approximately the value shown in the table. For potentiometers, in which the resistance does not drop to  $0\Omega$  at either end of rotation, a value of resistance 10% lower than the values shown in the table should be used.

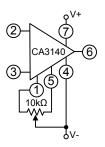



Figure 1A. BASIC

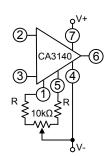



Figure 1B. IMPROVED RESOLUTION

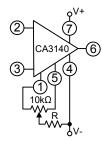



Figure 1C. SIMPLER IMPROVED RESOLUTION

Figure 1. THREE OFFSET VOLTAGE NULLING METHODS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.