

UNISONIC TECHNOLOGIES CO., LTD

LM741

Advance

LINEAR INTEGRATED CIRCUIT

GENERAL-PURPOSE

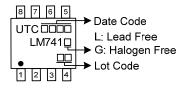
DESCRIPTION

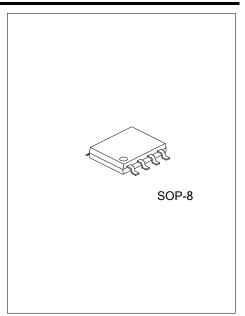
The UTC **LM741** device is a general-purpose operational amplifier featuring offset-voltage null capability.

The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low-value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

The UTC **LM741** device is characterized for operation from 0°C to 70°C.

FEATURES


- * Short-Circuit Protection
- * Offset-Voltage Null Capability
- * Large Common-Mode and Differential Voltage Ranges


RDERING INFORMATION

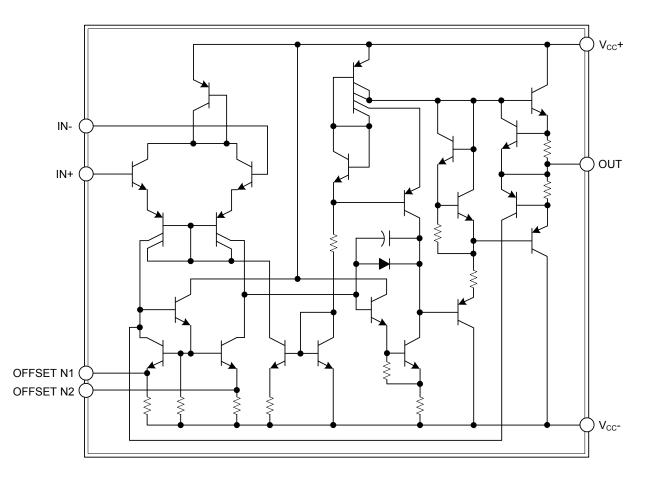
Ordering Number	Deelvere	Packing	
Lead Free Halogen Free	Package		
LM741L-S08-R LM741G-S08-R	SOP-8	Tape Reel	

LM741 <u>G-S08-</u> R	
(1)Packing Type	(1) R: Tape Reel
(2)Package Type	(2) S08: SOP-8
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

LM741

Advance


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OFFSET N1	External input offset voltage adjustment
2	IN-	Inverting input
3	IN+	Noninverting input
4	V _{CC} -	Negative supply
5	OFFSET N2	External input offset voltage adjustment
6	OUT	Output
7	V _{CC} +	Positive supply
8	NC	No internal connection

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (Unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage (Note 1)	V _{CC}	V _{CC} -18 ~ 18	
Differential Input Voltage (Note 2)	V _{ID}	-15 ~ 15	V
Input Voltage (any Input) (Note 1, 3)	VI	-15 ~ 15	V
Voltage between Offset Null (either OFFSET N1 or OFFSET N2) and V_{CC} -		-15 ~ 15	V
Duration of Output Short Circuit (Note 4)		Unlimited	
Lead Temperature 1.6 mm (1/16 inch) from Case for 10 Seconds	TL	260	°C
Operating Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC}+ and V_{CC}-.

3. Differential voltages are at IN+ with respect to IN-.

- 4. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15V, whichever is less
- 5. The output may be shorted to ground or either power supply.

RECOMMENDED OPERATING CONDITIONS

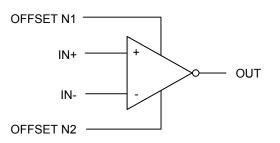
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Maltage	V _{CC+}	5		15	V
Supply Voltage	V _{CC} -	-5		-15	V
Operating Free-Air Temperature	T _A	0		+70	°C

THERMAL INFORMATION

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ _{JA}	158	°C/W

Advance

ELECTRICAL CHARACTERISTICS


(At specified virtual junction temperature, $V_{CC} \pm \pm 15V$, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDI	MIN	TYP	MAX	UNIT	
POWER SUPPLY	OTWDOL					IVI/V/	UNIT
			T _A =25°C		1.7	2.8	mA
Supply Current	l _Q	$V_{\rm O}$ = 0, No Load	T _A =23 C		1.7	3.3	mA
			T _A =0 70 C	80	95	0.0	dB
Power Supply Rejection Ratio	PSRR	V_{CC} = ±9V to ±15V	T _A =23°C T _A =0~70°C	80	30		dB
	P _D	V _O = 0, No Load	T _A =25°C	00	50	85	mW
Total Power Dissipation			T _A =0~70°C			100	mW
INPUT CHARACTERISTICS					1		1
			T _A =25°C		1	6	mV
Input Offset Voltage	V _{OS}	V _O =0	T _A =0∼70°C			7.5	mV
Input Offset Voltage Adjust Range	$\Delta V_{OS(adj)}$	V _O =0, T _A =25°C			±15		mV
	I	N 0	T _A =25°C		80	500	nA
Input Bias Current	Ι _Β	V _O =0	T _A =0∼70°C			800	nA
Input Offeet Current		N/ 0	T _A =25°C		20	200	nA
Input Offset Current	l _{os}	V _O =0	T _A =0~70°C			300	nA
Common-Mode Voltage Range	N	T _A =25°C		±12	±13		V
Common-Mode voltage Range	V _{CM}	T _A =0~70°C	•	±12			V
Common Made Dejection Datio	CMRR	V _{CM} = V _{CM min}	T _A =25°C	70	90		dB
Common-Mode Rejection Ratio			T _A =0~70°C	70			dB
Large Signal Voltage Gain	Av	R _L ≥ 2kΩ	T _A =25°C	85	100		dB
	Λγ	V_0 = ±10V	T _A =0∼70°C	82			dB
Input Resistance	r _i	T _A =25°C			2		MΩ
Input Capacitance	Ci	TA=25°C			1.4		pF
OUTPUT CHARACTERISTICS		1			i	i	i
		R _L =10kΩ	T _A =25°C	±12	±14		V
Maximum Peak Output Voltage	V _{OM}	R _L ≥ 10kΩ	T _A =0~70°C	±12			V
Swing		$R_L = 2k\Omega$	T _A =25°C	±10			V
		R _L ≥2kΩ	T _A =0~70°C	±10			V
Short-Circuit Output Current	l _{os}	T _A =25°C			±20	±40	mA
Output Resistance	ro	V _o = 0, T _A =25°C (Note 2)			75		Ω
DYNAMIC PERFORMANCE		-			i	i	i
Slew Rate	SR	$V_1 = 10V$, $R_L = 2k\Omega$ $C_L = 100pF$, see Figure 1			0.5		V/µs
Rise Time	tr	V _I =20mV, R _L =2kΩ C _L =100pF, see Figure 1			0.3		μs
Overshoot Factor					5		%

LM741

SIMPLIFIED SCHEMATIC

TYPICAL CHARACTERISTICS

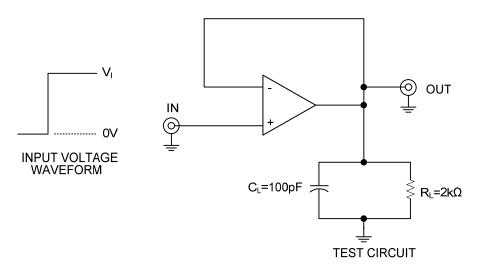


Figure 1. Rise Time, Overshoot, and Slew Rate

The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, current-gain betas (β), collector or emitter resistors and so forth. The input offset pins allow the designer to adjust for mismatches resulting from external circuitry. These input mismatches can be adjusted by placing resistors or a potentiometer between the inputs as shown in Figure 2. A potentiometer can fine-tune the circuit during testing or for applications which require precision offset control.

Figure 2. Input Offset Voltage Null Circuit

TYPICAL APPLICATION

The voltage follower configuration of the operational amplifier is used for applications where a weak signal drives a relatively high current load. This circuit is also called a buffer amplifier or unity-gain amplifier. The inputs of an operational amplifier have a very high resistance which puts a negligible current load on the voltage source. The output resistance of the operational amplifier is almost negligible, so the resistance can provide as much current as necessary to the output load.

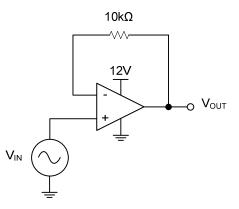


Figure 3. Voltage Follower Schematic

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

