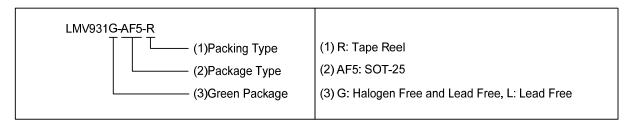

LMV931 Preliminary CMOS IC

1.8V OPERATIONAL AMPLIFIERS WITH RAIL-TO-RAIL INPUT AND OUTPUT

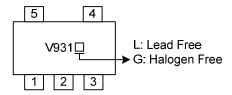
DESCRIPTION

The UTC **LMV931** is a low-voltage, low-power, operating for operation of 1.8V to 5.5V, it can be used in portable applications that is powered from a single-cell Li-ion or two-cell batteries. It has rail-to-rail input and output capability for maximum signal swings in low-voltage application. The UTC **LMV931** input common-mode voltage extends 200 mV beyond the rails for increased flexibility. The output can swing rail-to-rail unloaded and typically can reach 105mV from the rails, while driving a 600Ω load (at 1.8V operation).

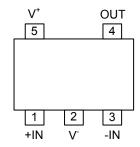

During 1.8V operation, the devices typically consume a quiescent current of $80\mu A$, and yet it is able to achieve excellent electrical specifications. Furthermore, the amplifier offer good output drive characteristic, with the ability to drive a 600Ω load with minimal ringing.

■ FEATURES

- * Supply Voltage:1.8~5.5V
- * Supply Current/Amplifier:210 µA (Max)
- * Input Offset Voltage:4mV (Max)
- * Rail-to-Rail Input and Output
- * Slew Rate: 0.75V/µs (Typ.)

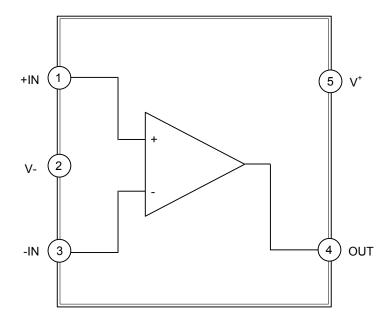

■ ORDERING INFORMATION

Ordering	Number	Dealters	Packing	
Lead Free	Halogen Free	Package		
LMV931L-AF5-R	LMV931G-AF5-R	SOT-25	Tape Reel	



<u>www.unisonic.com.tw</u> 1 of 4

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	+IN	Non-inverting Input
2	V	Negative Supply Input
3	-IN	Inverting Input
4	OUT	Output
5	V ⁺	Positive Supply Input

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

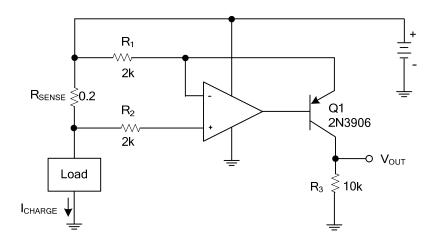
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ -V ⁻	6	V
Differential Input Voltage	V_{ID}	Supply voltage	V
Input or Output Pin Voltage		$V^ 0.2 \sim V^+ + 0.2$	V
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	206	°C/W

■ RECOMMENDED OPERATING CONDITIONS


PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ -V ⁻	1.8 ~ 5.5	V
Operating Free-Air Temperature	T_{OPR}	-40 ~ +125	°C

■ ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V^{\dagger}=1.8\sim5V, V=0V, V_{|C}=V^{\dagger}/2, V_{O}=V^{\dagger}/2, \text{ and } R_L>1 \text{ M}\Omega, \text{ unless otherwise specified})$

PARAMETER	SYMBOL	TEST CONDIT	MIN	TYP	MAX	UNIT	
Supply Current/Amplifier	ΙQ				120	210	μA
Power Supply Rejection Ratio	PSRR	1.8V ≤ V+ ≤ 5V, VIC=0.5V		75	100		dB
Input Offset Voltage	V_{OS}				1	4	mV
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$				10		μ/°C
Input Bias Current	I_{B}				20		nA
Input Offset Current	I _{OS}				10		nA
Common-Mode Voltage Range	V_{CM}			V⁻-0.2		V ⁺ -0.2	V
		$0V \le V_{IC} \le 1.5V, 2.3V$:	≤ V _{IC} ≤ 2.7V	2.7V 60			dB
Common-Mode Rejection Ratio	CMRR	$-0.2V \le V_{IC} \le 0V$, $2.7V \le V_{IC} \le 2.9V$		50	78		dB
Large Cignel Voltage Cain	ا ،	R_L =600 Ω , V_O =0.2 V to	$R_L=600\Omega$, $V_O=0.2V$ to $V^+-0.2V$		96		dB
Large Signal Voltage Gain	A_{\lor}	A_V $R_L=2k\Omega, V_O=0.2V \text{ to } V^+-0.2V$	88	105		dB	
		R _L =600Ω, V _{ID} =±100mV	V _{OH} 5V	V ⁺ -0.14	V ⁺ -0.09		V
				5V	V		
Output Voltage	V_{O}	VID-T 100111V			0.12	0.16	V
Output Voltage	VO			V ⁺ -0.05	V ⁺ -0.03		V
		$R_L=2K\Omega$, $V_{ID}=\pm 100 \text{mV}$	V		V		
				0.037	0.065	V	
Slew Rate	SR				0.75		V/µS
Gain Bandwidth Product	GBW				2.2		MHz
Phase Margin	Фм				70		0
Gain Margin					7.5		dB
Equivalent Input Noise Voltage	V_n	f=1kHz			50		nV ^{√Hz}
Equivalent Input Noise Current	I _n	f=1kHz			0.07		pA ^{√Hz}
Total Harmonic Distortion	THD	f=1kHz,A $_{V}$ =1, R $_{L}$ =600 Ω , V $_{ID}$ =1V $_{p-p}$			0.05		%

■ TYPICAL APPLICATION CIRCUIT

$$V_{\text{OUT}} = \frac{R_{\text{SENSE}}^* R_3}{R_1} * Ic_{\text{harge}} = 1\Omega^* I_{\text{Charge}}$$

High-Side Current Sense Amplifier

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.