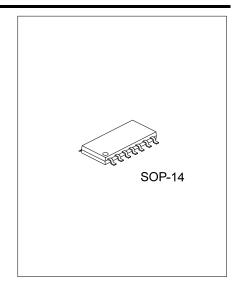
UNISONIC TECHNOLOGIES CO., LTD

LF347


LINEAR INTEGRATED CIRCUIT

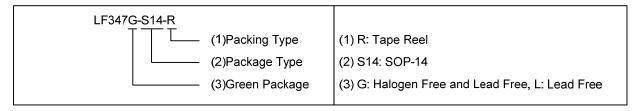
JFET-INPUT QUAD OPERATIONAL AMPLIFIER

DESCRIPTION

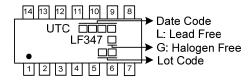
The UTC LF347 is low-cost, high-speed, JFET-input operational amplifier. It requires low supply current yet maintains a large gain-bandwidth product and a fast slew rate. In addition, it matched high-voltage JFET input provide very low input bias and offset current.

The UTC LF347 can be used in applications such as high-speed integrators, digital-to-analog converters, sample-and-hold circuits, and many other circuits.

FEATURES

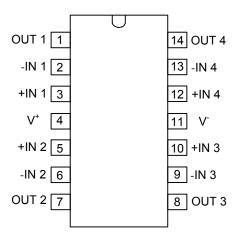

* Supply Voltage: ±3.5 ~ ±18V

* Supply Current/Amplifier: 3mA (Max.) * Input Offset Voltage: 10mV (Max.)


* Slew Rate: 11V/µs (Typ.)

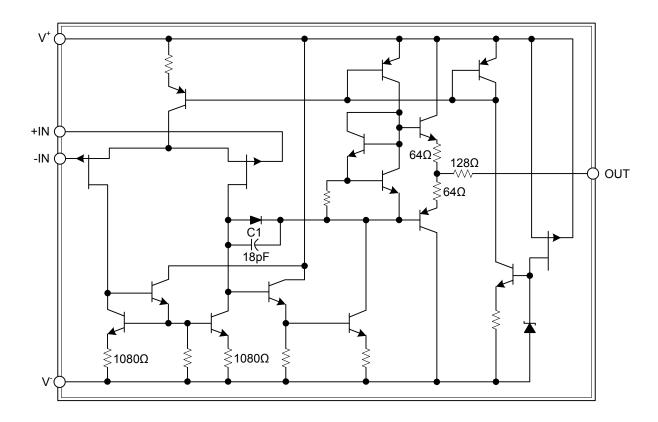
ORDERING INFORMATION

Ordering	Number	Dookson	Dealine	
Lead Free	Halogen Free	Package	Packing	
LF347L-S14-R	LF347G-S14-R	SOP-14	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 5 QW-R113-030.B


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT 1	Output of 1 AMP
2	-IN 1	Inverting input of 1 AMP
3	+IN 1	Non-inverting input of 1 AMP
4	V ⁺	Positive power supply
5	-IN 2	Non-inverting input of 2 AMP
6	+IN 2	Inverting input of 2 AMP
7	OUT 2	Output of 2 AMP
8	OUT 3	Output of 3 AMP
9	-IN 3	Inverting input of 3 AMP
10	+IN 3	Non-inverting input of 3 AMP
11	V	Negative power supply
12	-IN 4	Non-inverting input of 4 AMP
13	+IN 4	Inverting input of 4 AMP
14	OUT 4	Output of 4 AMP

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V [±]	±18	V
Differential Input Voltage	V_{ID}	Supply voltage	V
Input Voltage (Note 1)	Vı	±15	V
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Cumple Maltage	V ⁺	3.5		18	V
Supply Voltage	V	-3.5		-18	V
Operating Free-Air Temperature	T _{OPR}	0		+70	°C

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	76	°C/W

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, V[±] =±15V, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Supply Current/ Amplifier	I _{CC}				2.5	3.0	mA
Power Supply Rejection Ratio	PSRR	(Note 1)		70	100		dB
Input Offset Voltage	Vos	V_{IC} =0, R_S =10 $k\Omega$			3.5	10	mV
Input Offset Voltage Drift	ΔV _{OS} /ΔT	V_{IC} =0, R_S =10 $k\Omega$			20		μV/°C
Input Bias Current (Note 2)	lΒ	V _{IC} =0			60		pА
Input Offset Current (Note 2)	los	V _{IC} =0			30		рА
Common-Mode Voltage Range	V _{CM}			-11		11	V
Common-Mode Rejection Ratio	CMRR	$R_S \le 10k\Omega$		70	100		dB
Large Signal Voltage Gain	A _V	$V_O=\pm 10V$, $R_L=2k\Omega$		88	100		dB
Output Valtage	Vo	V _{OF}	V _{OH}	12	13.5		V
Output Voltage		$R_L=10k\Omega$ V_{OL}			-13.5	-12	V
Slew Rate	SR				11		V/µs
Gain-Bandwidth Product	GBW				2.7		MHz
Crosstalk Attenuation	V ₀₁ / V ₀₂	f=1kHZ			115		dB
Input-Referred Voltage Noise	en	R_S =20 Ω , f=1kHz			20		nV/ √Hz
Input-Referred Current Noise	i _n	f=1kHz			0.03		pA/ √Hz

Notes: 1. Supply-voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.

2. Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as possible.

^{2.} Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.

■ PARAMETER MEASUREMENT INFORMATION

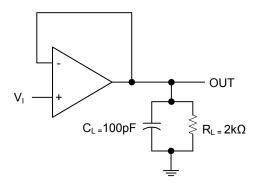


Figure 1. Unity-Gain Amplifier

TYPICAL APPLICATION CIRCUIT

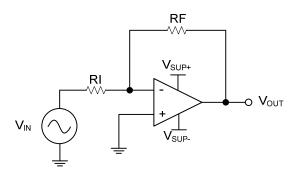


Figure 2. Inverting Amplifier

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.