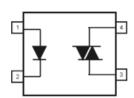
DATASHEET

4 PIN DIP RANDOM-PHASE TRIAC DRIVER PHOTOCOUPLER ELT302X, ELT305X Series

Features:

- Compliance Halogens Free
- (Br < 900 ppm, Cl < 900 ppm, Br+Cl < 1500 ppm)
- Peak breakdown voltage
- 400V: ELT302X
- 600V: ELT305X
- High isolation voltage between input and output (Viso=5000 V rms)
- Compact dual-in-line package
- •The product itself will remain within RoHS compliant version
- Compliance with EU REACH
- UL and cUL approved(No. E214129)
- VDE approved (No. 40028391)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CQC approved


Description

The ELT302X and ELT305X series of devices each consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon random phase photo Triac.

They are designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 to 240 VAC operations.

Applications

- Solenoid/valve controls
- Lamp ballasts
- Static AC power switch
- Interfacing microprocessors to 115 to 240Vac peripherals
- Incandescent lamp dimmers
- Temperature controls
- Motor controls

Schematic

Pin Configuration

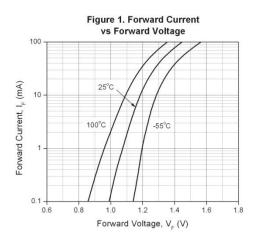
- 1. Anode
- 2. Cathode
- Terminal
 Terminal

1

Absolute Maximum Ratings (Ta=25°C)

Parameter			Symbol	Rating	Unit	
Input	Forward current		l _F	60	mA	
	Reverse voltage		V _R	6	V	
	Power dissipation		P	100	mW	
	Derating factor (above	$T_a = 85^{\circ}C)$	P _D -	3.8	mW /°C	
Output	Off-state Output	ELT302X		400	— v	
	Terminal Voltage	ELT305X	– V _{drm} –	600		
	Peak Repetitive Surge Current		Ітѕм	1	А	
	Power dissipation		P	300	mW	
	Derating factor (above	$T_a = 85^{\circ}C)$	P _C -	7.4	mW/°C	
Total power dissipation			Ртот	330	mW	
Isolation voltage *1			V _{ISO}	5000	Vrms	
Operating temperature Storage temperature Soldering Temperature* ²			T _{OPR}	-55 to 100	°C	
			T _{STG}	-55 to 125	°C	
			T _{SOL}	SOL 260		

Notes:

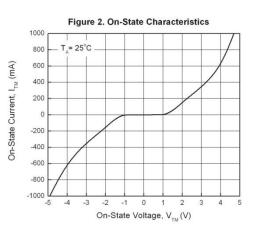
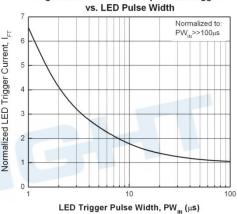
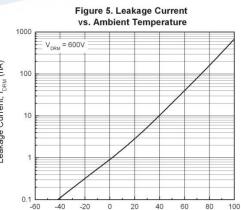

*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1 & 2 are shorted together, and pins 3 & 4 are shorted together. *2 For 10 seconds

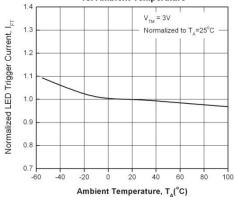
Electro-Optical Characteristics (Ta=25 $^{\circ}$ C unless specified otherwise)

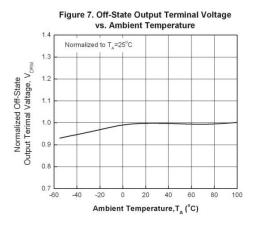
Input							
Parameter		Symbol	Min.	Тур.*	Max.	Unit	Condition
Forward Voltage		VF	-	1.18	1.5	V	I _F = 10mA
Reverse Leakag	e current	I _R	-	-	10	μΑ	$V_R = 6V$
Output							
Parame	ter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Peak Blocking C	urrent	I _{DRM}	-	-	100	nA	$V_{DRM} = Rated V_{DRM}$ I _F = 0mA
Peak On-state V	oltage	Vtm	-	-	2.5	V	I™=100mA peak, IF=Rated IFT
Critical Rate of	ELT302X		-	100	-		V _{PEAK} =Rated V _{DRM} , I _F =0 (Fig. 8)
Rise off-state Voltage	ELT305X	- dv/dt	1000	-	-	V/µs	V _{PEAK} =400V, I _F =0 (Fig. 8)
Transfer Chara	acteristics						
Parame	ter	Symbol	Min.	Тур.*	Max.	Unit	Condition
	ELT3021 ELT3051	1	5		15		
LED Trigger Current	ELT3022 ELT3052	IFT	-	-	10	mA	Main terminal Voltage=3V
	ELT3023 ELT3053		-	-	5		
Holding Current		Iн	-	250	-	μA	

* Typical values at T_a = 25°C

Typical Electro-Optical Characteristics Curves


Figure 4. LED Current Required to Trigger Figure 3. Holding Current vs. Ambient Temperature 7 2.5 Normalized to T_= 25°C Normalized LED Trigger Current, $I_{\rm FT}$ 6 Normalized Holding Current, I_H 2.0 5 1.5 4 3 1.0 2 0.5 0.0 L -60 0 -40 -20 0 20 40 60 80 100 Ambient Temperature , T_A (°C)



Ambient Temperature, T_A (°C)

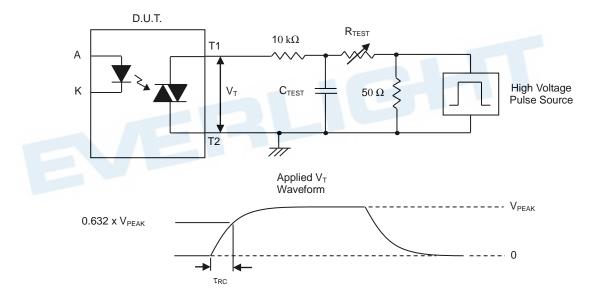

Figure 6. LED Trigger Current vs. Ambient Temperature

Figure 8. Static dv/dt Test Circuit & Waveform

Measurement Method

The high voltage pulse is set to the required V_{PEAK} value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform V_T is monitored using a x100 scope probe. By varying R_{TEST}, the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, τ_{RC} is recorded and the dv/dt calculated.


$$dv/dt = \frac{0.632 \text{ x } V_{\text{PEAK}}}{\tau_{\text{RC}}}$$

For example, V_{PEAK} = 400V for EL302X series. The dv/dt value is calculated as follows:

$$dv/dt = \frac{0.63 \times 400}{\tau_{RC}} = \frac{252}{\tau_{RC}}$$

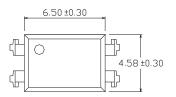
Order Information

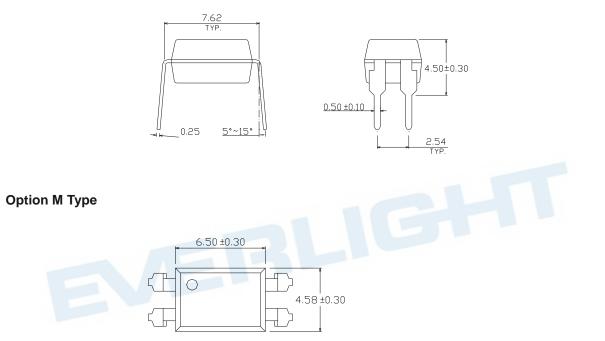
Part Number

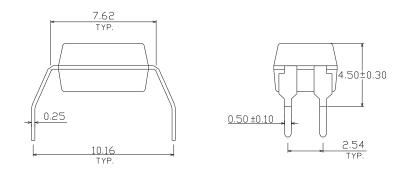
Note

X = Part No. (1, 2 or 3)

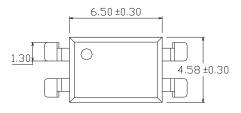
Y = Lead form option (S1, M or none)

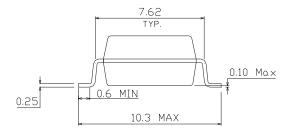

Z = Tape and reel option (TU, TD or none).

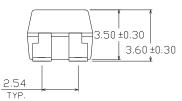

V = VDE safety approved (optional)


Option	Description	Packing quantity
None	Standard DIP-4	100 units per tube
Μ	Wide lead bend (0.4 inch spacing)	100 units per tube
S1 (TU)	Surface mount lead form (low profile) + TU tape & reel option	1500 units per reel
S1 (TD)	Surface mount lead form (low profile) + TD tape & reel option	1500 units per reel

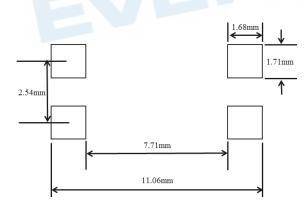
Package Dimension (Dimensions in mm)


Standard DIP Type





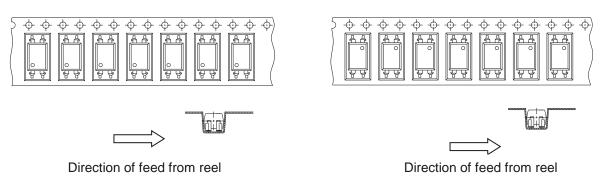
Option S1 Type

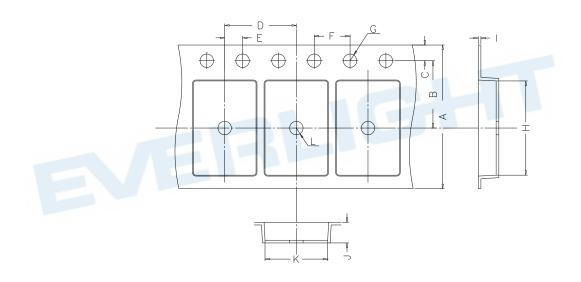


Recommended pad layout for surface mount leadform

Device Marking

Notes

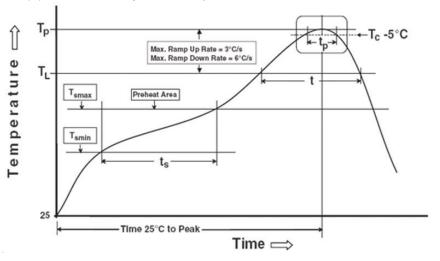

EL T3053 Y WW	denotes Everlight denotes Device Number denotes 1 digit Year code denotes 2 digit Week code
WW	denotes 2 digit Week code
V	denotes VDE option


Option TU

Tape & Reel Packing Specifications

Option TD

Tape dimensions


Dimension No.	Α	В	С	D	Е	F
Dimension(mm)	16.00±0.3	7.5±0.1	1.75±0.1	8.0±0.1	2.0±0.1	4.0±0.1
Dimension No.	G	н	I	J	к	L
Dimension(mm)	1.55±0.05	10.4±0.1	0.4±0.05	4.60±0.1	5.1±0.1	1.55±0.05

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T_{smin})

Temperature max (T_{smax})

Time (T_{smin} to T_{smax}) (t_s) Average ramp-up rate (T_{smax} to T_p)

Other

Liquidus Temperature (T_L) Time above Liquidus Temperature (t_L) Peak Temperature (T_P) Time within 5 °C of Actual Peak Temperature: T_P - 5°C Ramp- Down Rate from Peak Temperature Time 25°C to peak temperature Reflow times Reference: IPC/JEDEC J-STD-020D

150 °C 200°C 60-120 seconds 3 °C/second max

217 °C 60-100 sec 260°C 30 s 6°C /second max. 8 minutes max. 3 times

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.