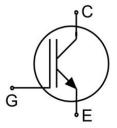


NCE75T120VT

Pb Free Product

1200V, 75A, Trench FS II Fast IGBT

General Description


Using NCE's proprietary trench design and advanced FS (Field Stop) second generation technology, the 1200V Trench FSII IGBT offers superior conduction and switching performances, and easy parallel operation;

Features

- Trench FSII Technology Offering
- Very low V_{CE(sat)}
- High speed switching
- Positive temperature coefficient in V_{CE(sat)}
- Very tight parameter distribution
- High ruggedness, temperature stable behavior

Application

- PV power
- Three-level Solar String Inverter
- UPS

Schematic diagram

Package Marking and Ordering Information

Device	Device Package	Device Marking		
NCE75T120VT	TO-247	NCE75T120VT		

TO-247

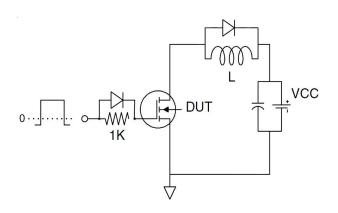
Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Symbol	Parameter	Value	Units
V_{CES}	Collector-Emitter Voltage	1200	V
V_{GES}	Gate- Emitter Voltage	±30	V
1.	Collector Current	150	Α
lc	Collector Current @T _C = 100 °C	75	Α
I_{Cpuls}	Pulsed Collector Current, t _p limited by T _{jmax}	300	Α
-	Turn off safe operating area,V _{CE} =1200V,T _j =175°C	300	Α
D.	Power Dissipation @ T _C = 25°C	833	W
P_D	Power Dissipation @T _C = 100 °C	417	W
T_{J}, T_{stg}	Operating Junction and Storage Temperature Range	-55 to +175	°C
T∟	Maximum Temperature for Soldering	260	°C

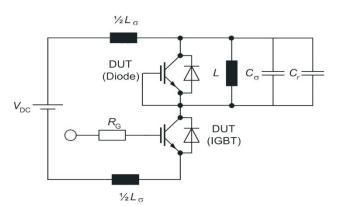
NCE75T120VT

Thermal Characteristic

Symbol	Parameter	Value	Units
R _{θJC}	Thermal Resistance, Junction to case for IGBT	0.18	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	40	°C/W

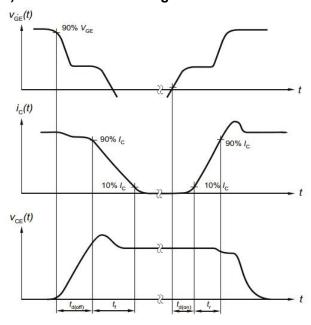

Electrical Characteristics (T_C=25°C unless otherwise noted)

0	Davamatan	Conditions		Value			
Symbol	Parameter			Min.	Тур.	Max.	Units
Static Chara	cteristics	-		•			
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	V _{GE} =0V,I _{CE} =3mA		1200			V
Ices	Collector-Emitter Leakage Current	V _{GE} =0V,V _{CE} =1200V				400	uA
I _{GES(F)}	Gate to Emitter Forward Leakage	V _{GE} =+30V,V _{CE} =0V				200	nA
I _{GES(R)}	Gate to Emitter Reverse Leakage	V _{GE} =-30V,V _{CE} =0V				200	nA
$V_{\text{CE(sat)}}$	Collector-Emitter Saturation Voltage	I _C =75A V _{GE} =15V	T _j =25°C T _i =175°C		1.70 1.95	1.95	V
V _{GE(th)}	Gate Threshold Voltage	$V_{GE}=15V$ $I_j=175^{\circ}C$ $I_{C}=3mA,V_{CE}=V_{GE}$		4.5	1.95	6.0	
	aracteristics		· · · · · ·	I	I		
C _{ies}	Input Capacitance	V _{CE} =30V,V _{GE} =0V, f=1MHz			9747		pF
Coes	Output Capacitance				327		
C _{res}	Reverse Transfer Capacitance				271		
Qg	Total Gate Charge	V _{CC} =960V, I _C =75A, V _{GE} =15V			572		nC
Q _{ge}	Gate to Emitter Charge				69		
Q _{gc}	Gate to Collector Charge				368		
Switching C	haracteristics						
t _{d(ON)}	Turn-on Delay Time				19		
t _r	Rise Time				17		
t _{d(OFF)}	Turn-Off Delay Time	V_{CE} =600V, I_{C} =75A, V_{GE} =0/15V, R_{g} =8 Ω Inductive Load			170		ns
t f	Fall Time				18		
Eon	Turn-On Switching Loss				5.6		
E _{off}	Turn-Off Switching Loss				2.7		mJ
Ets	Total Switching Loss				8.3		
Eon	Turn-On Switching Loss	V_{CE} =600V, I_{C} =75A, V_{GE} =0/15V, R_{g} =8 Ω T_{j} =175°C			7.1		
E _{off}	Turn-Off Switching Loss				3.6		mJ
Ets	Total Switching Loss				10.7		

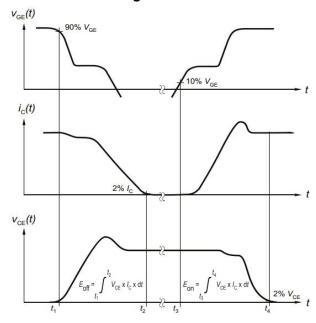


Test Circuit

1) Gate Charge Test Circuit



2) Switch Time Test Circuit



Switching Characteristics

1) Definition of switching times

2) Definition of switching losses

Typical Electrical and Thermal Characteristics

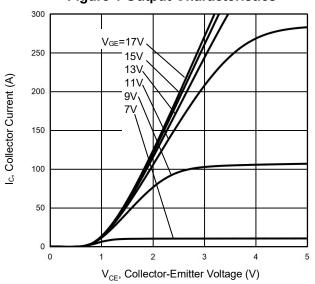


Figure 3 V_{CE(sat)} vs. Case Temperature

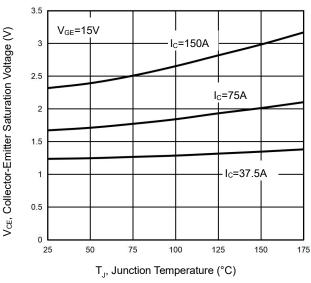
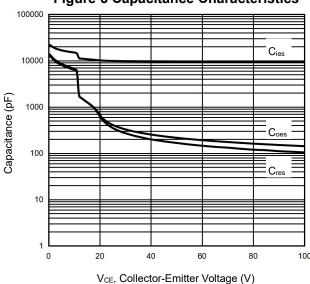



Figure 5 Capacitance Characteristics

Figure 2 Transfer Characteristics

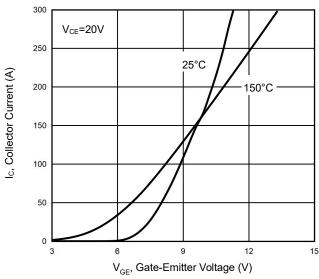


Figure 4 Saturation Voltage vs. VGE

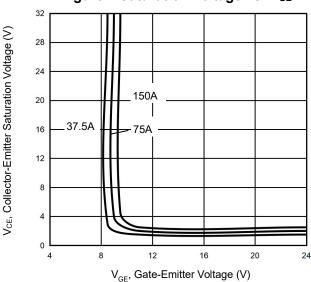
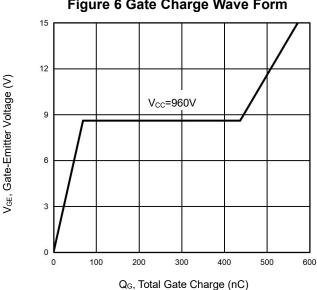



Figure 6 Gate Charge Wave Form

NCE75T120VT

Typical Electrical and Thermal Characteristics

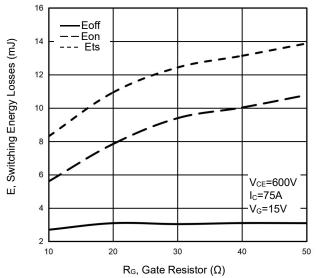


Figure 9 Switching Energy vs. Temperature

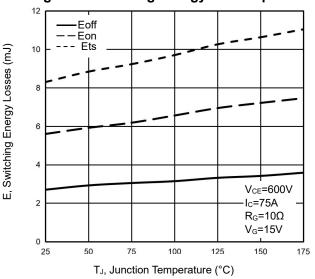


Figure 11 Gate-Emitter Threshold Voltage as a **Function of Junction Temperature**

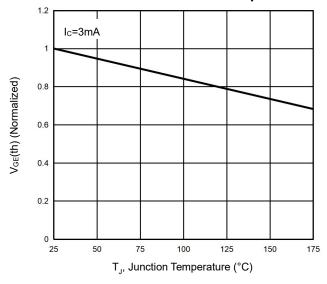


Figure 8 Switching Loss vs. Collector Current

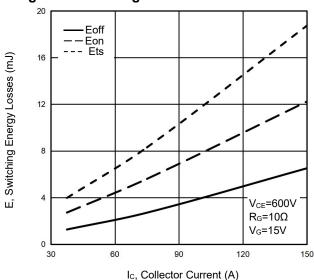
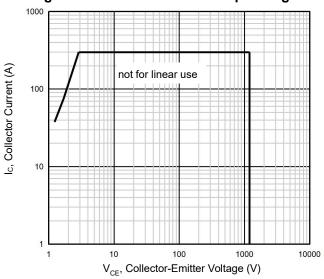
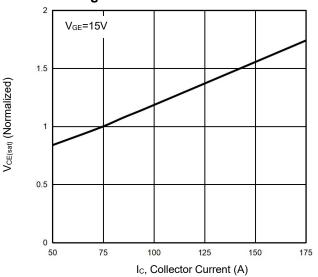




Figure 10 Forward Bias Safe Operating Area

Figure 12 Typical Collector-Emitter Saturation Voltage as a function of Collector Current

Page 5 Wuxi NCE Power Co., Ltd http://www.ncepower.com V1.0

Typical Electrical and Thermal Characteristics

Figure 13 Switching Loss vs. Collector Current

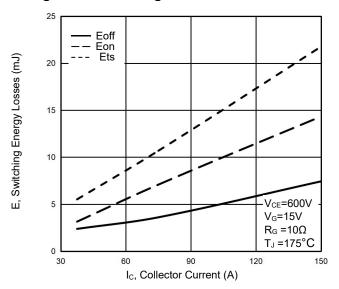


Figure 15 V_{CES} vs. Case Temperature

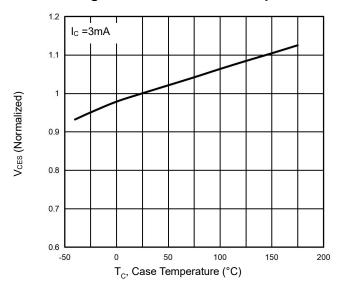


Figure 14 Ptot vs. Case Temperature

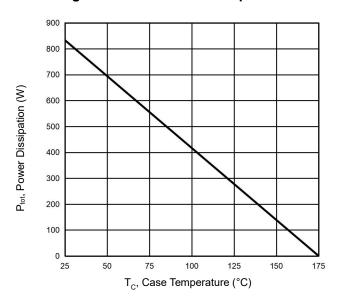
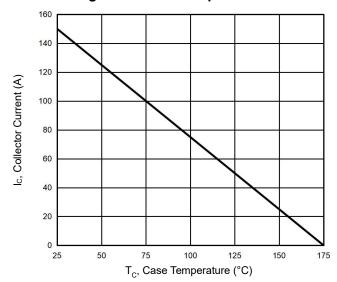
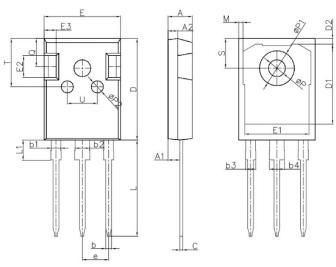




Figure 16 I_C vs. Temperature

TO-247-E Package Information

Course had	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	4.90	5.10	0.19	0.20	
A1	2.31	2.51	0.09	0.10	
A2	1.90	2.10	0.07	0.08	
b	1.16	1.26	0.05	0.06	
b1	1.96	2.06	0.08	0.09	
b2	2.96	3.06	0.12	0.13	
b3		2.25		0.09	
b4		3.25		0.13	
С	0.59	0.66	0.02	0.03	
D	20.90	21.10	0.82	0.83	
D1	16.25	16.85	0.64	0.66	
D2	1.05	1.35	0.04	0.05	
E	15.70	15.90	0.62	0.63	
E1	13.10	13.50	0.52	0.53	
E2	4.40	4.60	0.17	0.18	
E3	2.40	2.60	0.09	0.10	
е	5.436	BSC	0.214 E	BSC	
L	19.80	20.10	0.78	0.79	
L1		4.30		0.17	
М	0.35	0.95	0.01	0.04	
Р	3.40	3.60	0.13	0.14	
P1	7.00	7.40	0.28	0.29	
P2	2.40	2.60	0.09	0.10	
Q	5.60	6.00	0.22	0.24	
S	6.05	6.25	0.24	0.25	
Т	9.80	10.20	0.39	0.40	
U	6.00	6.40	0.24	0.25	

Wuxi NCE Power Co., Ltd

Attention:

- Any and all NCE power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE power representative nearest you before using any NCE power products described or contained herein in such applications.
- NCE power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE power products described or contained herein.
- Specifications of any and all NCE power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- NCE power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all NCE power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE power Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. NCE power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE power product that you intend to use.
- This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.