

DATA SHEET

THICK FILM LEAD FREE CHIP RESISTORS

SR_P series 0.5%, 1%, 5%, 10%, 20% sizes 0201/0402/0603/0805/1206 RoHS compliant & Halogen free

YAGEO

Chip Resistor Surface Mount

SR_P SERIES

0201/0402/0603/0805/1206

SCOPE

This specification describes SR0201 to SR1206 chip resistors made by thick film process.

<u>APPLICATIONS</u>

- Total lead free without RoHS exemption
- Telecommunications
- Power supplies

FEATURES

- Superior to RC series in pulse withstanding voltage and surge withstanding voltage.
- MSL class: MSL I
- Halogen free epoxy
- Reduce environmentally hazardous waste
- High component and equipment reliability

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

SR XXXX X X X XX XXXX P (1) (7)

(2) (3) (4) (5) (6)

(I) SIZE

0201/0402/0603/0805/1206

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $J = \pm 5\%$

 $K=\pm 10\%$

 $M = \pm 20\%$

(3) PACKAGING TYPE

R = Paper taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL & POWER

07 = 7 inch dia. Reel 7W = 7 inch dia. Reel & 2 x standard power

7T = 7 inch dia. Reel & 3 x standard power

47 = 7 inch dia. Reel & $4 \times$ standard power

(6) RESISTANCE VALUE

$|\Omega \le R \le |M\Omega|$

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter P is lead free (without RoHS exemption).

Resistance rule of global part number

Resistance coding Example rule $IR = I \Omega$ XRXX $IR5 = 1.5 \Omega$ (1 to 9.76 Ω) $9R76 = 9.76 \Omega$ **XXRX** $IOR = IO \Omega$ $(10 \text{ to } 97.6 \Omega)$ $97R6 = 97.6 \Omega$ **XXXR** $100R = 100 \Omega$ (100 to 976 Ω) XKXX $IK = 1,000 \Omega$ $9K76 = 9760 \Omega$ (I to 9.76 K Ω) XXKX $10K = 10,000 \Omega$ 97Κ6= 97,600 Ω (10 to 97.6 K Ω) XXXK $100K = 100,000 \Omega$ $(100 \text{ K}\Omega)$

ORDERING EXAMPLE

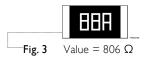
The ordering code for an SR0805 chip resistor, value $10 \text{ K}\Omega$ with ±5% tolerance, supplied in 7-inch tape reel is: SR0805JR-0710KP.

Chip Resistor Surface Mount

SR_P | SERIES | **0201/0402/0603/0805/1206**

MARKING

SR0201/ 0402



No Marking

SR0603

1%, 0.5%,E24 exception values 10/11/13/15/20/75 of E24 series

1%, 0.5%, E96 refer to EIA-96 marking method, including values 10/11/13/15/20/75 of E24 series

SR0805 /1206

Both E-24 and E-96 series: 4 digits, $\pm 0.5\%$ & $\pm 1\%$

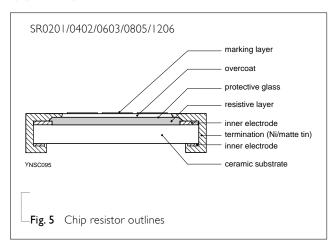
First three digits for significant figure and 4th digit for number of zeros

NOTE

For further marking information, please refer to data sheet "Chip resistors marking".

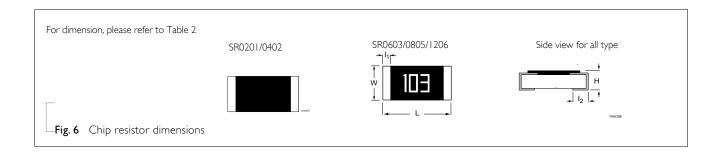
TAPING REEL & POWER

Table I


		PC	OWER, W (P70)		
TYPE			CODING		
	07	7W	7T	47	
0201	1/20	1/10	-	1/5	
0402	1/16	1/8	1/5	-	
0603	1/10	1/5	1/4	-	
0805	1/8	1/4	1/3	1/2	
1206	1/4	1/2	3/4	=	

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value. The whole element is covered by a protective overcoat. The top of overcoat is marked with the resistance value. Finally, the two external terminations (Ni/matte tin) are added, as shown in Fig.5.


OUTLINES

DIMENSIONS

Table 2

TYPE	L (mm)	W (mm)	H (mm)	I ₁ (mm)	I ₂ (mm)
SR0201	0.60±0.03	0.30±0.03	0.23±0.03	0.12±0.05	0.15±0.05
SR0402	1.00±0.05	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
SR0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
SR0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
SR1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.45±0.20

Chip Resistor Surface Mount SR_P SERIES 0201/0402/0603/0805/1206

ELECTRICAL CHARACTERISTICS

Table 3

		CHARACTERISTICS						
TVDE	DO\A/ED	RESISTANCE	Operating	Max.	Max.	Dielectric	Temperature	
TYPE	POWER	RANGE	Temperature	Working	Overload	Withstanding	Coefficient of Resistance	
			Range	Voltage	Voltage	Voltage		
	1/20W						$ \Omega \le R \le 0\Omega $	
SR0201	1/10W			25V	50V	50V	-100~+350ppm°C 10Ω < R ≤ IMΩ	
	1/5W		_				± 200 ppm°C	
	1/16W							
SR0402	1/8W			75V	100\	/ 100V		
	1/5W		<u>-</u>					
	1/10W	F3.4 F0/ 100/ 300/						
SR0603	1/5W	E24 5%, 10%, 20% $I\Omega \le R \le IM\Omega$	≤ IMΩ 55 °C to +155 °C 	75V	150\	′ 150V		
	1/4W	E24/E96 0.5%, 1%					$1\Omega \le R \le 10\Omega$	
	1/8W	$1 \Omega \le R \le 1M \Omega$					± 200 ppm°C	
CDOOOL	1/4W			150) /	2001	, 200) ($10\Omega < R \le 1M\Omega$ ± $100 \text{ ppm}^{\circ}\text{C}$	
SR0805	1/3W			150V	300V	/ 300V	± 100 ppm C	
	1/2W							
	1/4W	_						
SR1206	1/2W			200 V	400 V) V 500V		
	3/4W							

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 4 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	SR0201/0402	SR0603/0805/1206
Paper taping reel (R)	7" (178 mm)	10,000	5,000

NOTE

1. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

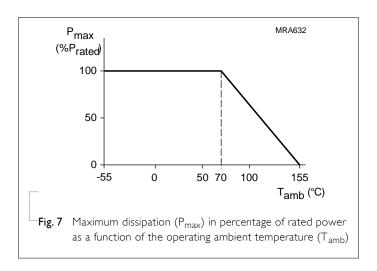
Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C: SR0201: I/20W, I/10W, I/5W SR0402: I/16W, I/8W, I/5W SR0603: I/10W, I/5W, I/4W SR0805: I/8W, I/4W, I/3W, I/2W SR1206: I/4W, I/2W, 3/4W

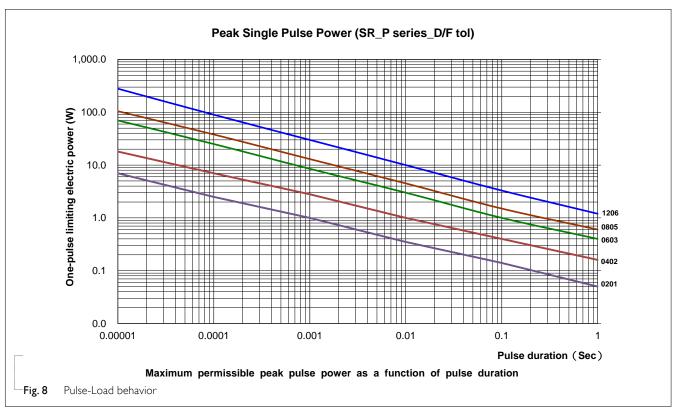
RATED VOLTAGE

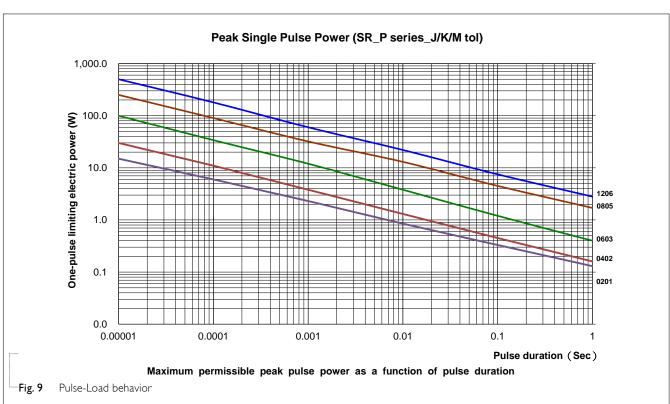
The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)


P = Rated power (W)


 $R = Resistance value (\Omega)$

YAGEO

PULSE LOAD BEHAVIOR

TESTS AND REQUIREMENTS

 Table 5
 Test condition, procedure and requirements

TEST METHOD	PROCEDURE	REQUIREMENTS
MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C	Refer to table 3
	Formula:	
	T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
	Where t_1 = +25 °C or specified room temperature	
	t_2 = -55 °C or +125 °C test temperature	
	R_1 =resistance at reference temperature in ohms	
	R ₂ =resistance at test temperature in ohms	
IEC60115-1 4.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	±(2.0%+0.05 Ω)
IEC 60068-2-2	1,000 hours at T_A = 155 °C ±5 °C, unpowered	\pm (2.0%+0.05 Ω) for D/F tol \pm (3.0%+0.05 Ω) for J tol
IEC 60115-1 4.24.2	Steady state for 1,000 hours at 40 °C / 95% R.H. RCWV applied for 1.5 hours on and 0.5 hour off	±(3.0%+0.05 Ω)
IEC 60115-1 4.25.1 MIL-STD-202 Method 108	1,000 hours at 70±2 °C, RCWV applied for 1.5 hours on, 0.5 hour off, still-air required	\pm (2.0%+0.05 Ω) for D/F tol \pm (3.0%+0.05 Ω) for J tol
IEC 60115-1 4.18	Condition B, no pre-heat of samples	±(1.0%+0.05 Ω)
MIL-STD- 202 Method 210	Lead-free solder, 260 \pm 5 °C, 10 \pm 1 seconds immersion time	No visible damage
	Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	
JESD22-A104C	-55/+125 °C for 1 cycle per hour, with 1,000 cycles.	±(1.0%+0.05 Ω)
	IEC 60115-1 4.13 IEC 60115-1 4.24.2 IEC 60115-1 4.25.1 MIL-STD-202 Method 108 IEC 60115-1 4.18 MIL-STD-202 Method 210	$\begin{tabular}{ll} \begin{tabular}{ll} MIL-STD-202 Method 304 & At +25/-55 °C and +25/+125 °C \\ \hline {Formula:} \\ T.C.R = & \frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \ (ppm/°C) \\ \hline Where \\ t_1 = +25 °C \ or \ specified \ room \ temperature \\ t_2 = -55 °C \ or +125 °C \ test \ temperature \\ R_1 = resistance \ at \ reference \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \ ohms \\ \hline R_2 = resistance \ at \ test \ temperature \ in \$

Chip Resistor Surface Mount SR_P SERIES 0201/0402/0603/0805/1206

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability Wetting	J-STD-002	Electrical Test not required Magnification 50X SMD conditions: Immerse the specimen into the solder pot at 245±3°C for 2±0.5 seconds.	Well tinned (≥95% covered) No visible damage
Board Flex	IEC 60115-1 4.33	Chips mounted on a 90mm glass epoxy resin PCB (FR4) Bending for 0402: 5mm 0603 & 0805: 3mm 1206 and above: 2mm Holding time: minimum 60 seconds	±(1.0%+0.05 Ω)

Chip Resistor Surface Mount | SR_P | SERIES | 0201/0402/0603/0805/1206

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Jan. 20, 2022	-	- Add size 0201
Version 0	Feb. 03, 2021	-	- New product datasheet

[&]quot;YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."

[&]quot;The reimbursement is limited to the value of the products."