

DATA SHEET SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

Automotive grade with Soft Termination NPO & X7R 16 V TO 1000 V I nF to 4.7 uF RoHS compliant & Halogento Free

YAGEO

2

17

<u>SCOPE</u>

This specification describes Automotive grade X7R series chip capacitors with flexible leadfree terminations and used for automotive equipments.

APPLICATIONS

All general purpose applications Entertainment applications Comfort / security applications Information applications

<u>FEATURES</u>

- AEC-Q200 qualified
- MSL class: MSL I
- Soldering is compliant with J-STD-020D
- Increased mechanical performance
- High component and equipment reliability
- The capacitors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

GLOBAL PART NUMBER

AS <u>XXXX</u> <u>X</u> <u>X</u> <u>XXX</u> <u>X</u> B <u>X</u> <u>XXX</u> (1) (2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0603 (1608) / 0805 (2012) / 1206 (3216)/ 1210 (3225)

(2) TOLERANCE

- J = ±5%
- $K = \pm 10\%$
- M= ±20%

(3) PACKING STYLE

- R = Paper/PE taping reel; Reel 7 inch
- K = Blister taping reel; Reel 7 inch
- P = Paper/PE taping reel; Reel 13 inch
- F = Blister taping reel; Reel 13 inch

(4) TC MATERIAL

X7R

NPO

(5) RATED VOLTAGE

7 = 16 V	Z = 630 V
8 = 25 V	$C = 1000 \vee$
9 = 50 V	
$0 = 100 \vee$	
A = 200 V	
Y = 250 V	

(6) PROCESS

- N = Class | MLCC
- B = Class II MLCC

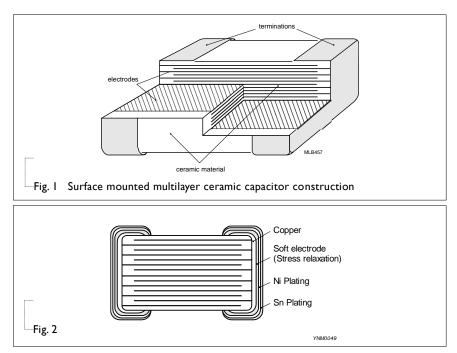
(7) CAPACITANCE VALUE

2 significant digits + number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $121 = 12 \times 10^{1} = 120 \text{ pF}$

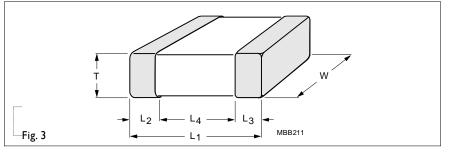
З


17

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end flexible terminations and finally covered with a layer of plated tin (NiSn).


The terminations are lead-free. A cross section of the structure is shown in Fig.1 and Fig.2.

DIMENSION

DINCION	910					
Table I	For outlines	s see fig. 3				
TYPE	LI (mm)	W (mm)	T (mm)	L2/L3(mm) min	L2/L3(mm) max	L4(mm) min
0603	1.6 ± 0.2	0.8 ± 0.15	0.8 ± 0.15	0.20	0.65	0.50
0805	2.0 ± 0.3	1.25 ± 0.2	0.85 ± 0.15 1.25 ± 0.20	0.25	0.75	0.70
1206	3.2 ± 0.4	1.6 ± 0.2	$ \begin{array}{r} 0.85 \pm 0.15 \\ 1.25 \pm 0.20 \\ 1.60 \pm 0.20 \end{array} $	0.25	0.85	1.50
1210	3.2 ± 0.5	2.5 ± 0.3	$ \begin{array}{r} 1.25 \pm 0.2 \\ 1.6 \pm 0.3 \\ 2.0 \pm 0.3 \\ 2.5 \pm 0.3 \end{array} $	0.25	1.00	1.20

OUTLINES

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 2			
CAP.	1206	1210	
	630 V	630 V	1000 V
I.0 nF			
I.2 nF			
I.5 nF	1.25±0.20		
I.8 nF	1.25±0.20		
2.2 nF	1.25±0.20		
2.7 nF	1.25±0.20		
3.3 nF	1.25±0.20		
3.9 nF	1.25±0.20		
4.7 nF	1.25±0.20	1.6±0.30	2.0±0.30
5.6 nF	1.6±0.20	1.6±0.30	2.0±0.30
6.8 nF	1.6±0.20	1.6±0.30	2.0±0.30
8.2 nF	1.6±0.20	1.6±0.30	2.0±0.30
I0 nF	1.6±0.20	I.6±0.30	2.5±0.30
I5 nF		1.6±0.30	2.5±0.30
22 nF		2.0±0.30	2.5±0.30
33 nF		2.5±0.30	
47 nF			

NOTE

Values in shaded cells indicate thickness class in mm

 $\frac{4}{17}$

Product specification	5
to 250 V	17

D	250	v	

Table 3 Size	0805						
CAP.	0603				0805		
	16 V	25 V	50 V	100 V	25 V	50 V	100 V
1.0 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	0.85±0.15
1.5 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	0.85±0.15
2.2 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	0.85±0.15
3.3 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	0.85±0.15
4.7 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	0.85±0.15
6.8 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	0.85±0.15
10 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	0.85±0.15
15 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	0.85±0.15
22 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	0.85±0.15
33 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	1.25±0.2
47 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	0.85±0.15	0.85±0.15	1.25±0.2
68 nF	0.8±0.15	0.8±0.15	0.8±0.15		1.25±0.2	1.25±0.2	1.25±0.2
100 nF	0.8±0.15	0.8±0.15	0.8±0.15	0.8±0.15	1.25±0.2	1.25±0.2	1.25±0.2
l uF					1.25±0.2		

CAPACITANCE RANGE & THICKNESS FOR X7R

NOTE

Values in shaded cells indicate thickness class in mm

Product specification	6
	17

250 V

Table 4 Size 1206 1206 1210 CAP. 16V 25V 50 V 100 V 200 V / 250 V 50V 100V 200 V 22 nF 1.25±0.2 33 nF 1.25±0.2 47 nF 1.25±0.2 68 nF 1.25±0.2 100 nF 0.85±0.15 0.85±0.15 1.25±0.2 1.6±0.2 1.25±0.2 1.25±0.2 1.25±0.2 150 nF 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 220 nF 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 4.7 uF 2.5±0.3

CAPACITANCE RANGE & THICKNESS FOR X7R

ΝΟΤΕ

Values in shaded cells indicate thickness class in mm

THICKNESS CLASSES AND PACKING QUANTITY

Table 5

SIZE CODE	THICKNESS	TAPE WIDTH QUANTITY PER REEL	Ø180 Paper	MM / 7 INCH Blister	Ø330 I Paper	MM / 13 INCH Blister
0603	0.8 ±0.15 mm	8 mm	4,000		15,000	
0905	0.85 ±0.15 mm	8 mm	4,000		15,000	
0805	1.25 ±0.2 mm	8 mm		3,000		10,000
	0.6 ±0.1 mm	8 mm	4,000		20,000	
1206	0.85 ±0.1 mm	8 mm	4,000		15,000	
1206	1.25 ±0.2 mm	8 mm		3,000		10,000
	I.6 ±0.2 mm	8 mm		2,000		10,000
	1.25 ±0.2 mm	8 mm		3,000		
1210	1.6 ± 0.3 mm	8 mm		2,000		
1210	2.0 ± 0.3 mm	8 mm		2,000		
	2.5 ±0.3 mm	8 mm		1,000		

ELECTRICAL CHARACTERISTICS

NP0/X7R DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35°C
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

DESCRIPTION						VALUE
Capacitance range						I nF to 4.7 uF
	- \					1 NF 10 4.7 UF
Dissipation factor (D.F NP0)		C			(100 + 000)
INFU				< 30 pF	≤ /	(400 + 20C)
			C	≥ 30 pF		≤0.1 %
Capacitance tolerance					(1)	
X7R					±5% ⁽¹⁾ ,	±10%, ±20%
Dissipation factor (D.F)					
X7R		0603	0805	1206	1210	
	16V	InF to 100nF		220nF		≤ 3.5%
	25V	InF to 39nF	InF to 100nF	100nF to 220nF		≤ 2.5%
		47nF to 100nF				≤ 3.5%
			ΙμF			≤ 5%
	50V	InF to 39nF	InF to 100nF	100nF to 220nF		≤ 2.5%
		47nF to 100nF				≤ 3.5%
					4.7 uF	$\leq 10\%$
	100V	InF to IOnF	InF to 100nF	100nF to 220nF		≤ 2.5%
		I2nF to I00nF				≤ 5%
200	′ / 250V			22nF to 100nF		≤ 2.5%
Insulation resistance at minute at U _r (DC)	fter l			IR ≥ 10 GΩ c	or I.R × C ≥ 500Ω.F wł	nichever is less
Maximum capacitance function of temperatur (temperature characte NP0	re					±15%
Operating temperatur NP0/X7R	e range:					C to +125 °C

NOTE

I. Capacitance tolerance ±5% doesn't available for X7R full product range, please contact local sales force before order

7

17

SOLDERING RECOMMENDATION

Table 7

SOLDERING METHOD	SIZE 0402	0603	0805	1206	≥ 2 0
Reflow	≥ 0.1 µF	≥ I.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

SOLDERING CONDITIONS

The lead free MLCCs are able to stand the reflow soldering conditions as below:

- Temperature: above 220 °C
- Endurance: 95 to 120 seconds
- Cycles: 3 times

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202G-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

TESTS AND REQUIREMENTS

Table 8 Test procedures and requirements

TEST	TEST METH	OD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Capacitance	IEC 60384- 21/22	4.5.1	At 20°C, 24 hours after annealing f = 1 KHz, measuring at voltage 1 V _{ms} at 20°C	Within specified tolerance
Dissipation Factor (D.F.)	IEC 60384- 21/22	4.5.2	At 20 °C, 24 hours after annealing f = 1 KHz, measuring at voltage 1 V _{rms} at 20°C	In accordance with specification
Insulation Resistance	IEC 60384- 21/22	4.5.3	At U_r (DC) for I minute	In accordance with specification

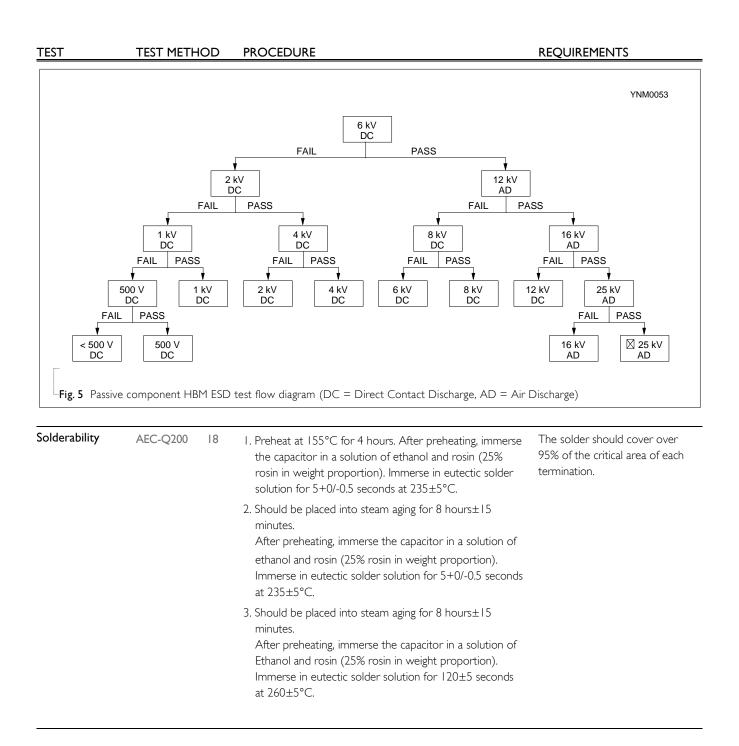
8

17

TEST	TEST METHOD		PROCEDURE	REQUIREMENTSNo visual damage $\Delta C/C$ NPO: Within $\pm 2.5\%$ or 0.25 pF, whichever is greaterX7R: Within $\pm 10\%$ D.F.:within initial specified valueIR:within initial specified value		
High Temperature Exposure	AEC-Q200 3		Unpowered ; 1000hours @ T=150°C Measurement at 24±2 hours after test conclusion.			
Temperature Cycling	AEC-Q200	4	Preconditioning; 150 +0/–10°C for 1 hour, then keep for 24 ±1 hours at room temperature 1000 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature Recovery time 24 ±2 hours	No visual damage $\Delta C/C$ NPO: Within ±2.5% or 0.25 pF whichever is greater X7R: Within ±10% D.F. meet initial specified value IR meet initial specified value		
Destructive Physical Analysis	AEC-Q200	5	Note: Only applies to SMD ceramics. Electrical test not required.			
Moisture Resistance			T=24 hrs/per cycle; 10 continuous cycles unpowered. Measurement at 24 ±2 hours after test condition.	No visual damage $\Delta C/C$ NPO: Within ±3% or 3 pF, whichever is greater X7R: Within ±15% D.F. Within initial specified value IR Meet initial specified value		

9 17

X7R 16 V to 250 V


EST TEST	r method	PROCEDURE	REQUIREMENTS
	65 DITIO 60 A DRY 55 A 55 A 55 A 45 HUHIDI 40 UNCONT 35 A 30 A 25 INITIAL 10 S 0 -5 -10 -10	ARTING'IN INTO TIN INTO TIN INTO	DOT RH
Fig 4 Moistu		PECIFIED ONE CYCLE 24 HOURS. REPEAT AS SPECIFIED I	N 3.3
Fig. 4 Moistu		I. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for	No visual damage after recover
	ure resistant	I. Preconditioning, class 2 only:	
	ure resistant	 I. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 2. Initial measure: Parameter: Cap, D.F., I.R. Measuring voltage: 1.5V ± 0.1 VDC 	No visual damage after recover $\Delta C/C$ NPO: Within ±2% or 1 pF, whichever is greater

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS		
Operational Life	AEC-Q200	8	 Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 	No visual damage		
			 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Endurance test: Temperature: X7R: 125 °C Specified stress voltage applied for 1,000 hours: Applied 2.0 × U_r for general products 	ΔC/C NPO: Within ±2% or 1 pF, whichever is greater X7R/X7S: ±15%		
		Appl High stress App App 4. Recc 5. Final Note: I value p been m	Applied 1.5 × U _r for high cap. Products High voltage series follows with below stress condition: Applied 1.5 × Ur for 200V, 250V series Applied 1.2 × Ur for 630V series Applied 1.0 × Ur for 1KV series 4. Recovery time: 24 \pm 2 hours 5. Final measure: C, D, IR Note: If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to <i>"IEC 60384 4.1"</i> and then the requirement shall be met.	D.F. Less than 200% of initial spec. IR The insulation resistance shall be greater than 10% of initial spec.		
External Visual	AEC-Q200	9	Any applicable method using × 10 magnification	In accordance with specification		
Physical Dimension	AEC-Q200	10	Verify physical dimensions to the applicable device specification.	In accordance with specification		
Mechanical Shock	AEC-Q200	13	Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks) Peak value: 1,500 g's Duration: 0.5 ms Velocity change: 15.4 ft/s Waveform: Half-sin	$\Delta C/C$ NPO: Within ± 0.5% or 0.5 pF, whichever is greater X7R/X7S: ± 10% D.F. Within initial specified value IR Within initial specified value		

 Product specification
 12

 Surface-Mount Ceramic Multilayer Capacitors
 Soft termination
 X7R
 16 V to 250 V
 17

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS		
Vibration	AEC-Q200	14	5 g's for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8'' × 5'' PCB, 0.31'' thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2'' from any secure point. Test from	Δ C/C NPO: Within ±0.5% or 0.5 pF, whichever is greater X7R/X7S: ±10%		
			10-2000 Hz.	D.F: meet initial specified value IR meet initial specified value		
Resistance to Soldering Heat	AEC-Q200	15	Precondition: $150 \pm 0/-10$ °C for 1 hour, then keep for 24 ±1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for 1 minute Preheating: for size >1206 : 100 °C to 120 °C for 1 minute and 170 °C to 200 °C for 1 minute Solder bath temperature: 260 ± 5 °C Dipping time: 10 ± 0.5 seconds Recovery time: 24 ± 2 hours	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned		
				Δ C/C NPO: Within ± 1% or 0.5 pF, whichever is greater. X7R/X7S: ±10%		
				D.F. within initial specified value IR within initial specified value		
Thermal Shock	AEC-Q200	16	 I. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at 	No visual damage		
			room temp 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Rapid change of temperature test: -55 °C to +125 °C; 300 cycles 15 minutes at lower category temperature; 15 minutes at upper category temperature.	Δ C/C NPO: Within ± 1% or 1 pF, whichever is greater X7R/X7S: ±15%		
				D.F: meet initial specified value IR meet initial specified value		
			 Recovery time: Class 2: 24 ±2 hours Final measure: C, D, IR 			
ESD	AEC-Q200	17	Per AEC-Q200-004	A component passes a voltage level if all components stressed at that voltage level pass.		

TEST	TEST METHOD	PROCEDURE	E REQUIREME	NTS
		Capacitance	 NPO: f = 1 MHz for C ≤ InF, measuring at voltage 1 V_{rms} at 25 °C f = 1±0.1 KHz for C > InF, measuring at voltage 1±0.2 V_{rms} at 25 °C X7R/X7S: At 25 °C, 24 hours after annealing f = 1±0.1 KHz, measuring at voltage 1±0.2 V_{rms} at 25 °C 	Within specified
		Dissipation Factor (D.F.)	NPO: $f = I \text{ MHz}$ for $C \le InF$, measuring at voltage $I V_{rms}$ at 25 °C $f = I \pm 0.1 \text{ KHz}$ for $C > InF$, measuring at voltage $I \pm 0.2 V_{rms}$ at 25 °C X7R/X7S: At 25 °C, 24 hours after annealing $f = I \pm 0.1 \text{ KHz}$, measuring at voltage $I \pm 0.2 V_{rms}$ at 25 °C	In accordance with specification on Table 9
		Insulation Resistance (I.R.)	At U_r (DC) for I minute	In accordance with specification on Table 9
Electrical Characterization	AEC-Q200 19	Temperature coefficient	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage. $\boxed{Step Temperature(^{\circ}C)}{a 25\pm2} \\ b Lower temperature\pm3^{\circ}C \\ c 25\pm2 \\ d Upper Temperature\pm2^{\circ}C \\ e 25\pm2 \\ \hline \\ $	ΔC/C NPO: ±30ppm /°C X7R: ±15% X7S: ±22%
		Voltage Proof	1. Specified stress voltage applied for $1 \sim 5$ seconds 2. Ur ≤ 100 V: series applied 2.5 Ur 3. 100 V $<$ Ur ≤ 200 V series applied (1.5 Ur + 100) 4. 200 V $<$ Ur ≤ 500 V series applied (1.3 Ur + 100) 5. Ur > 500 V: 1.3 Ur 6. Ur ≥ 1000 V: 1.2 Ur Charge/Discharge current is less than 50 mA	No breakdown or flashover

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS			
Board Flex	AEC-Q200	21	Part mounted on a 100 mm X 40 mm FR4 PCB board, which is 1.6 ±0.2 mm thick and has a layer-thickness 35 µm ± 10 µm. Part should be mounted using the following soldering reflow profile. Conditions: Class2: Bending 5 mm at a rate of 1 mm/s, radius jig 230 mm	No visible damage $\Delta C/C$ NPO: Within ±1% or 0.5 pF, whichever is greater X7R: ±10%			
			Test Substrate:		Dimer	nsion(n	
			, b ,	Туре	а	b	с
			φ4.5 ^{ΥΝSC147}	0201	0.3	0.9	0.3
				0402	0.4	1.5	0.5
				0603	1.0	3.0	1.2
				0805	1.2	4.0	1.65
				1206	2.2	5.0	1.65
			100	1210	2.2	5.0	2.0
			unit: mm	1808	3.5	7.0	3.7
Terminal Strength	AEC-Q200	22	With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side o a device being tested. This force shall be applied for 60+1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested. * Apply 2N force for 0402 size.	may be inspection integrity terminal junction Before a device s electrica	Magnification of 20X or greater may be employed for inspection of the mechanical integrity of the device body, terminals and body/terminal junction. Before and after the test, the device shall comply with all electrical requirements stated in this specification.		
Beam Load Test	AEC-Q200	23	Place the part in the beam load fixture. Apply a force until the part breaks or the minimum acceptable force level required in the user specification(s) is attained.	\leq 0805 Thickness > 0.5 mm: 20N Thickness \leq 0.5 mm: 8N \geq 1206 Thickness \geq 1.25 mm: 54N Thickness \leq 1.25 mm: 15N			

 Product specification
 16

 Surface-Mount Ceramic Multilayer Capacitors
 Soft termination
 X7R
 16 V to 250 V
 17

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
			- Add 1206/NPO/630V/1.5nF to 10nF
Version 4	May 21, 2024		- Add 1210/NPO/630V/4.7nF to 33nF
			- Add 1210/NPO/1000V/4.7nF to 22nF
Version 3	Nov. 28, 2022	-	- Update Biased Humidity and operation life requirements.
Version 2	Dec. 21, 2020	-	- Add X7R product range, 0603, InF to 15nF, 16 to 100V
Version I	Dec. 04, 2018	-	- Add 0603/ 22nF to 100nF
Version 0	Oct. 05, 2017	-	- New

<u>LEGAL DISCLAIMER</u>

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly **YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.**

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

17

17