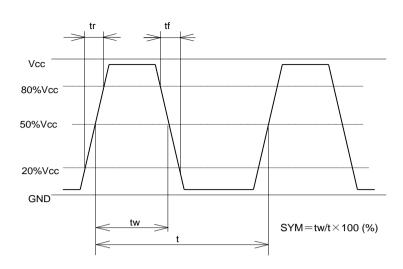
VCXO VG-4231CE

Product name VG-4231CE 24.000000 MHz CSC-M Product code / Ordering code Q3614CE000029xx

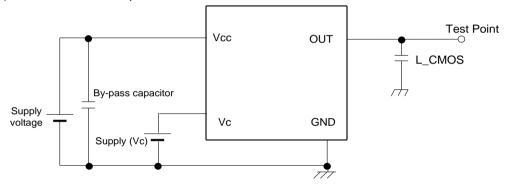
Please refer to the 8.Packing information about xx (last 2 digits)

Output waveform CMOS

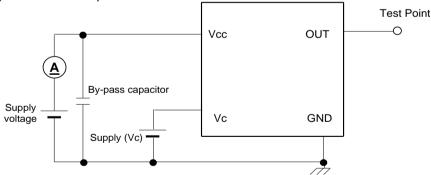

Pb free / Complies with EU RoHS directive

Reference weight Typ.26 mg

1. Absolute maximum ratings	3					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks
Maximum supply voltage	Vcc-GND	-0.3	-	+7	V	-
Storage temperature	T_stg	-40	ı	+125	°C	Storage as single product after unpacking.
Input voltage	Vin	-0.3	-	Vcc+0.3	V	Vc traminal

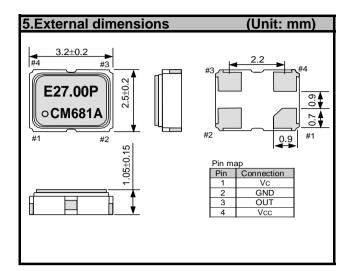

2.Specifications(characteristics)							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks	
Output frequency	fo		24.0000		MHz		
Supply voltage	Vcc	3	3.3	3.6	V	-	
Control voltage	Vc	0	1.65	3.3	V	Vc=1.65V+/-1.65V	
Operating temperature	T_use	-20	1	+70	οС	-	
Frequency tolerance	f_tol	-30	0	+30	x10 ⁻⁶	T_use	
Current consumption	Icc	-	1	2.5	mΑ	No load	
Frequency control range	f_cont	+/-140	-	-	x10 ⁻⁶	-	
Absolute pull range	APR	+/-100	-	-	x10 ⁻⁶	-	
Modulation characteristics	BW	15	-	-	kHz	+/-3dB	
Input resistance	Rin	5	-	-	МΩ	-	
Linearity	F_{LIN}	-	-	+/-10	%	-	
Frequency change polarity	-	Positive		-	-		
Symmetry	SYM	40	1	60	%	50% Vcc level	
Output voltage	V_{OH}	90 % Vcc	-	-	V	$I_{OH} = -3.0 \text{ mA}$	
	V_{OL}	-	-	10 % Vcc	V	I _{OL} = 3.0 mA	
Output load condition	L_CMOS	-	-	15	pF	-	
Rise time	tr	-	•	4	ns	20%Vcc to 80%Vcc level	
Fall time	tf	-	-	4	ns	80%Vcc to 20%Vcc level	
Start-up time	t_str	-	•	5	ms	t=0 at 90 %Vcc	
Frequency aging	f_aging	-5	-	5	x10 ⁻⁶	25°C, 5years	

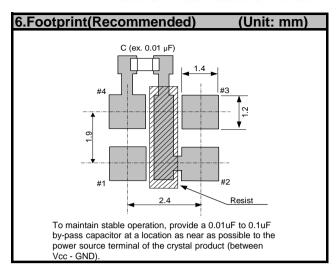
3. Timing chart

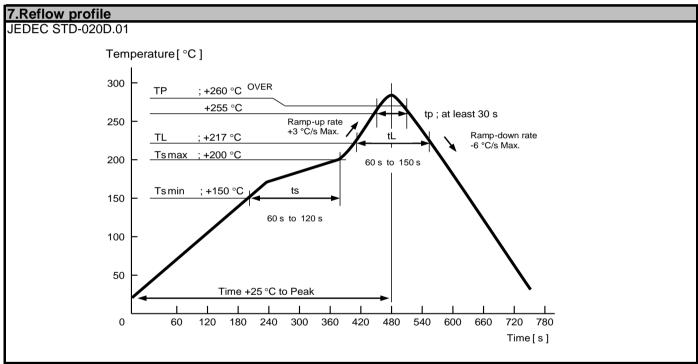


4.Test circuit

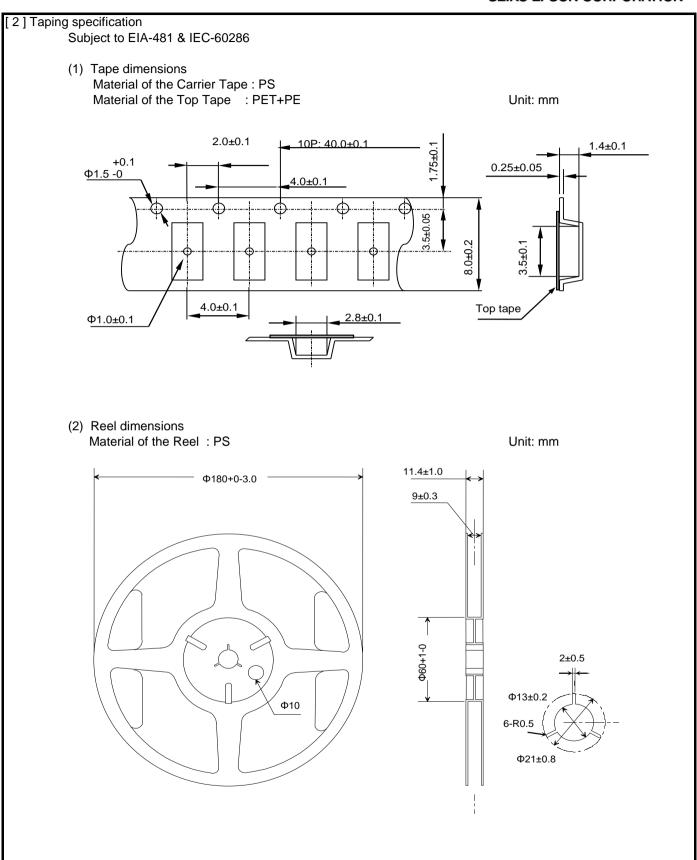
1) C-MOS load CL=15 pF




2) Current consumption



3) Condition


- 1. Oscilloscope
 - Impossible to measure both frequency and wave form at the same time.
 (In case of using oscilloscope's amplifier output, possible to measure both at the same time.)
- 2. L_CMOS includes probe capacitance.
- 3. By-pass capacitor (0.01 μF to 0.1 $\mu F)$ is placed closely between Vcc and GND.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply
 - ·Start up time (0 %Vcc→90 %Vcc) of power source should be more than 150 µs.
- ·Impedance of power supply should be as low as possible.
- 6. One point earth of test cirouit is required.

8.Packing	g informa	tion		
[1]Product number last 2 digits code(xx) description		The recommended code is "00"		
	Q3614CE	E000029xx		
	Code	Condition	Code	Condition
	00	1000pcs / Reel	12	250pcs / Reel
	01	Any Q'ty vinyl bag(Tape cut)	13	500pcs / Reel
	11	Any Q'ty / Reel	14	1kpcs / Reel
•				

9.Notice

- This material is subject to change without notice.
- Any part of this material may not be reproduced or duplicated in any form or any means without the written permission
 of Seiko Epson.
- The information about applied circuitry, software, usage, etc. written in this material is intended for reference only. Seiko Epson does not assume any liability for the occurrence of infringing on any patent or copyright of a third party. This material does not authorize the licensing for any patent or intellectual copyrights.
- When exporting the products or technology described in this material, you should comply with the applicable
 export control laws and regulations and follow the procedures required by such laws and regulations.
- You are requested not to use the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes. You are also requested that you would not make the products available to any third party who may use the products for such prohibited purposes.
- These products are intended for general use in electronic equipment. When using them in specific applications that require extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson in advance.
 - / Space equipment (artificial satellites, rockets, etc.)
 - / Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.)
 - / Medical instruments to sustain life
 - / Submarine transmitters
 - / Power stations and related
 - / Fire work equipment and security equipment
 - / Traffic control equipment
 - / And others requiring equivalent reliability.
- All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective.

10.Contact us

http://www5.epsondevice.com/en/contact/