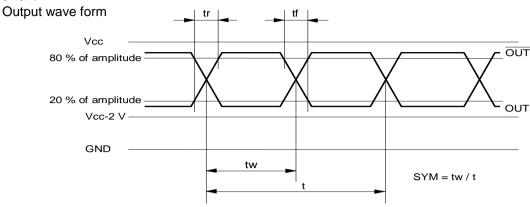
VG7050EBN

Product name VG7050EBN Product code / Ordering code

644.531300MHz CJGHCZ

X1G0045510014xx

Please refer to the 8.Packing information about xx (last 2 digits)


Output waveform LV-PECL Pb free / Complies with EU RoHS directive Reference weight Typ.166mg

1.Absolute maximum ratings							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks	
Maximum supply voltage	Vcc-GND	-0.3	-	+4	V	-	
Storage temperature	T_stg	-55	-	+125	°C	-	
Input voltage	Vin	-0.3	-	Vcc+0.3	V	Vc pin	

2.Specifications(characteristics)							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks	
Output frequency	fO		644.5313		MHz		
Supply voltage	Vcc	2.97	3.3	3.63	V	-	
Control voltage	Vc	0.3	1.65	3	V	Vc=1.65V+/-1.35V	
Operating temperature	T_use	-40	-	+85	°C	-	
Frequency tolerance	f_tol	-50	-	+50	x10⁻ ⁶	includes 10 years aging	
Current consumption	lcc	-	-	90	mA	L_ECL = 50Ω	
Disable current	I_dis	-	-	-	mA	-	
Frequency control range	f_cont	+/-150	-	-	x10 ⁻⁶	-	
Absolute pull range	APR	+/-100			x10 ⁻⁶	-	
Modulation characteristics	BW	10	-	-	kHz	+/-3 dB	
Input resistance	Rin	5000	-	-	kΩ	DC Level	
Frequency change polarity	-					Positive polarity	
Symmetry	SYM	45	-	55	%	at outputs crossing point	
Output voltage	V _{OH}	Vcc-1.025	-	-	V	-	
	V _{OL}	-	-	Vcc-1.62	V	-	
Output load condition	L_ECL	-	50	-	Ω	Outputs terminated to Vcc-2.0V	
Input voltage	V _{IH}	70%Vcc	-	-	V	OE pin	
	V _{IL}	-	-	30%Vcc	V	OE pin	
Rise time	tr	-	-	0.4	ns	20 % to 80 % of amplitude	
Fall time	tf	-	-	0.4	ns	20 % to 80 % of amplitude	
Start-up time	t_str	-	-	10	ms	-	
Phase noise		-	-90	-	dBc/Hz	Offset 100Hz	
		-	-107	-	dBc/Hz	Offset 1kHz	
	F_{CN}	-	-114	-	dBc/Hz	Offset 10kHz	
		-	-118	-	dBc/Hz	Offset 100kHz	
		-	-137	-	dBc/Hz	Offset 1MHz	
Phase jitter	t _{PJ}	-	0.2	-	ps	Offset Frequency: 12kHz to 20MHz	
Frequency aging	f_aging	-	-	-	x10 ⁻⁶	Included in frequency tolerance	

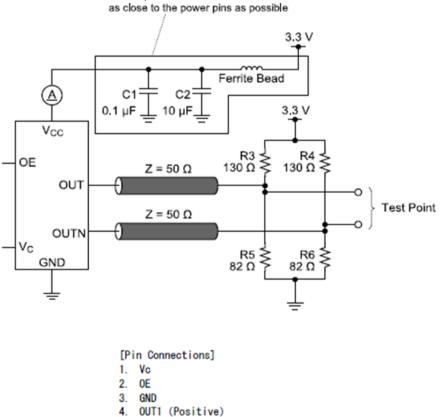
SEIKO EPSON CORPORATION

3. Timing chart

4.Test circuit

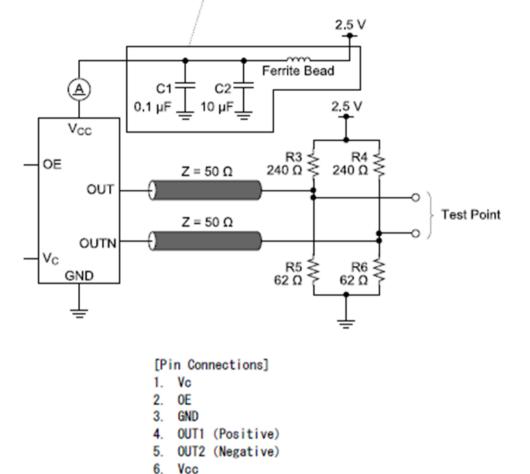
1) Condition

- (1) Oscilloscope
 - Bandwidth should be 5 times higher than DUT's output frequency.
 - Probe ground should be placed closely from test point and lead length should be as short as possible.
- (2) By-pass capacitor (approx. 0.01 mF ~ 0.1 mF) should be placed closely between Vcc and GND.

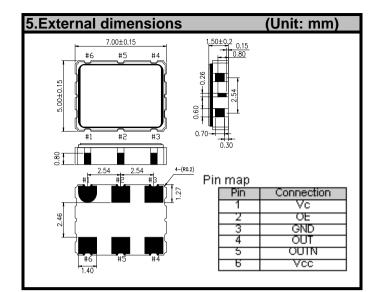

Please place them on the device side of the PCB

(3) Use the current meter whose internal impedance value is small.

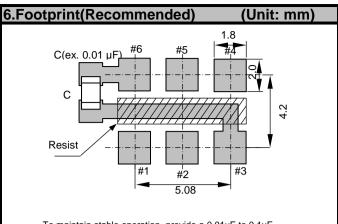
(4) Power supply

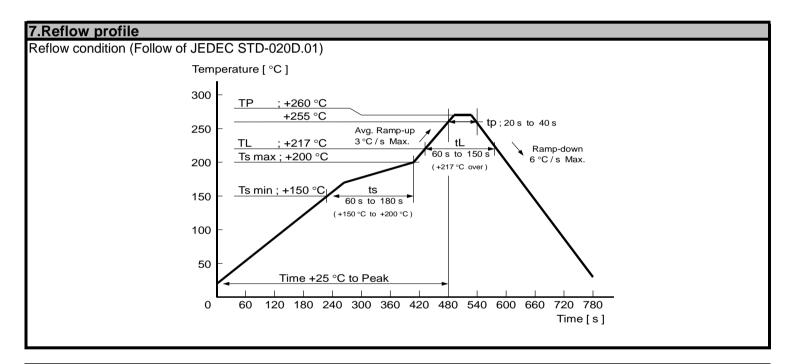

- Start up time(0 V→90 %Vcc)of power source should be more than 150us.
- Impedance of power supply should be as low as possible.

2) Vcc = 3.3V



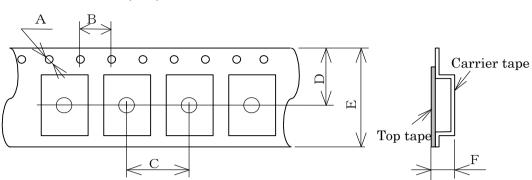
- 5. OUT2 (Negative) 6.
 - Vcc


3) Vcc = 2.5V


Please place them on the device side of the PCB as close to the power pins as possible

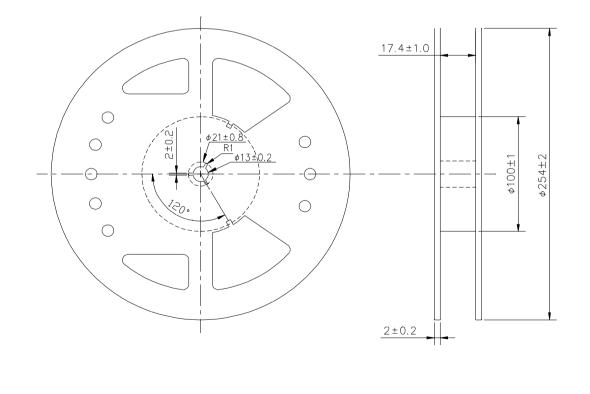
SEIKO EPSON CORPORATION

To maintain stable operation, provide a 0.01uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc - GND).



8.Packing	<u>g informa</u>	tion					
[1]Produc	t number la	number last 2 digits code(xx) description		The recommended code is "00"			
	X1G0045	510014xx					
	Code	Condition	Code	Condition			
	00	1000pcs / Reel	12	250pcs / Reel			
	01	Any Q'ty vinyl bag(Tape cut)	13	500pcs / Reel			
	11	Any Q'ty / Reel					

Unit: mm


2] Taping specification Subject to EIA-481 & IEC-60286

(1) Tape dimensionsMaterial of the Carrier Tape : PSMaterial of the Top Tape : PET+PE

Symbol	А	В	С	D	Е	F
Value	Φ1.5	4	8	9.25	16	2.3

(2) Reel dimensions Center material : PS Material of the Reel : PS

9.Notice

- This material is subject to change without notice.
- Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.
- The information about applied circuitry, software, usage, etc. written in this material is intended for reference only. Seiko Epson does not assume any liability for the occurrence of infringing on any patent or copyright of a third party. This material does not authorize the licensing for any patent or intellectual copyrights.
- When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- You are requested not to use the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes. You are also requested that you would not make the products available to any third party who may use the products for such prohibited purposes.
- These products are intended for general use in electronic equipment. When using them in specific applications that require extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson in advance. / Space equipment (artificial satellites, rockets, etc.)
 - / Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.)
 - / Medical instruments to sustain life
 - / Submarine transmitters
 - / Power stations and related
 - / Fire work equipment and security equipment
 - / Traffic control equipment
 - / And others requiring equivalent reliability.

• All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective.

10.Contact us

http://www5.epsondevice.com/en/contact/